AB,CD and EF are three concurrent lines passing through the point O such that OF bisects
$\angle {\text{BOD}}$. ${\text{If }}\angle {\text{BOF = 3}}{{\text{5}}^0}{\text{, find }}\angle {\text{BOC and }}\angle {\text{AOD}}{\text{.}}$
$
{\text{A}}{\text{.}}\angle {\text{BOC = 11}}{{\text{0}}^0} \\
{\text{B}}{\text{.}}\angle {\text{AOD = 11}}{{\text{0}}^0} \\
{\text{C}}{\text{.}}\angle {\text{AOD = 7}}{{\text{0}}^0} \\
{\text{D}}{\text{.None of these}}{\text{.}} \\
$
Answer
Verified
509.7k+ views
Hint: In this type of question which involves geometry, we have to first draw the diagram. For drawing the diagram information will be given in the question. Here it is given that three lines are concurrent which means they have the same starting point i.e. point O. After drawing the diagram for the question, use the property of straight angle and angle bisector to further solve the question.
Complete step-by-step answer:
This is a basic question based on finding the unknown angle.
In the question three lines AB, CD, and EF have same starting point O. i.e. they are concurrent and it is also given that OF line bisects$\angle {\text{BOD}}$ and $\angle {\text{BOF = 3}}{{\text{5}}^0}$
Based on this information the diagram is:
Line OF is the angle bisector of $\angle {\text{BOD}}$.
It is given that $\angle {\text{BOF = 3}}{{\text{5}}^0}.$
Since, OF is the angle bisector. So it will divide $\angle {\text{BOD}}$ into two equal parts.
$\therefore \angle {\text{BOF = 3}}{{\text{5}}^0} = \angle {\text{FOD}}.$
Now we know that angle made on a line or straight angle is equal to ${180^0}.$
Therefore, we can write:
$\Rightarrow \angle {\text{BOF + }}\angle {\text{FOD + }}\angle {\text{AOD = 18}}{{\text{0}}^0}$ …..(1)
Putting the values of $\angle {\text{BOF and }}\angle {\text{FOD in equation 1, we get:}}$
$
\Rightarrow {35^0}{\text{ + 3}}{{\text{5}}^{0}}{\text{ + }}\angle {\text{AOD = 18}}{{\text{0}}^0} \\
\Rightarrow \angle {\text{AOD = 18}}{{\text{0}}^0} - {70^0} = {110^0}. \\
$
Also, we know that when two lines intersect then the vertically opposite angles are equal.
So, we can write:
$\angle {\text{AOD = }}\angle {\text{BOC = }}{110^0}$.
So option A and B are correct.
Note: Before solving this type of problems which are simply based on angle calculation. You have to first draw the diagram from the information given in the question. You should remember the definition of vertically opposite angles and straight angles and their property. Straight angle is the angle which a straight line makes and is equal to ${180^0}$. Vertically opposite angles are always equal.
Complete step-by-step answer:
This is a basic question based on finding the unknown angle.
In the question three lines AB, CD, and EF have same starting point O. i.e. they are concurrent and it is also given that OF line bisects$\angle {\text{BOD}}$ and $\angle {\text{BOF = 3}}{{\text{5}}^0}$
Based on this information the diagram is:
Line OF is the angle bisector of $\angle {\text{BOD}}$.
It is given that $\angle {\text{BOF = 3}}{{\text{5}}^0}.$
Since, OF is the angle bisector. So it will divide $\angle {\text{BOD}}$ into two equal parts.
$\therefore \angle {\text{BOF = 3}}{{\text{5}}^0} = \angle {\text{FOD}}.$
Now we know that angle made on a line or straight angle is equal to ${180^0}.$
Therefore, we can write:
$\Rightarrow \angle {\text{BOF + }}\angle {\text{FOD + }}\angle {\text{AOD = 18}}{{\text{0}}^0}$ …..(1)
Putting the values of $\angle {\text{BOF and }}\angle {\text{FOD in equation 1, we get:}}$
$
\Rightarrow {35^0}{\text{ + 3}}{{\text{5}}^{0}}{\text{ + }}\angle {\text{AOD = 18}}{{\text{0}}^0} \\
\Rightarrow \angle {\text{AOD = 18}}{{\text{0}}^0} - {70^0} = {110^0}. \\
$
Also, we know that when two lines intersect then the vertically opposite angles are equal.
So, we can write:
$\angle {\text{AOD = }}\angle {\text{BOC = }}{110^0}$.
So option A and B are correct.
Note: Before solving this type of problems which are simply based on angle calculation. You have to first draw the diagram from the information given in the question. You should remember the definition of vertically opposite angles and straight angles and their property. Straight angle is the angle which a straight line makes and is equal to ${180^0}$. Vertically opposite angles are always equal.
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success
Master Class 9 English: Engaging Questions & Answers for Success
Master Class 9 Science: Engaging Questions & Answers for Success
Master Class 9 Social Science: Engaging Questions & Answers for Success
Master Class 9 Maths: Engaging Questions & Answers for Success
Class 9 Question and Answer - Your Ultimate Solutions Guide
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Difference Between Plant Cell and Animal Cell
What is pollution? How many types of pollution? Define it
What is the color of ferrous sulphate crystals? How does this color change after heating? Name the products formed on strongly heating ferrous sulphate crystals. What type of chemical reaction occurs in this type of change.