Answer
Verified
429.9k+ views
Hint: Given that, $AD \bot CD$ and $CB \bot CD$. Now we have to prove $\angle DAQ = \angle CBP$. Note that both $\vartriangle ADQ$ and $\vartriangle BPC$ are right angled triangles. AQ=BP and DP=CQ, given. Therefore, first we have to show that the triangles are congruent. And lastly, show that $\angle DAQ = \angle CBP$, as they are corresponding parts of congruent triangles.
Complete step-by-step solution:
Given, $AD \bot CD$ and $CB \bot CD$.
$ \Rightarrow \angle ADQ = \angle BCP = {90^ \circ }$
Therefore, both $\vartriangle ADQ$ and $\vartriangle BPC$ are right angled triangles.
Also, AQ=BP and DP=CQ
$ \Rightarrow DP + PQ = CQ + PQ$
$ \Rightarrow DQ = CP$
Now, in $\vartriangle ADQ$ and $\vartriangle BPC$,
$\angle ADQ = \angle BCP = {90^ \circ }$
AQ=BP (given)
DQ=CP
Therefore, $\vartriangle ADQ \cong \vartriangle BPC$ (by RHS rule of congruence)
Hence, $\angle DAQ = \angle CBP$ (corresponding parts of congruent triangles)
Note: The four rules of congruency are as follows:
SSS: When three sides of two different triangles are equal in length.
SAS: When two sides are equal, and the angle between them is also the same in measure.
AAS: When any two angles and a side is equal.
RHS: When the hypotenuse and any one side of two right angled triangles are equal in length.
Complete step-by-step solution:
Given, $AD \bot CD$ and $CB \bot CD$.
$ \Rightarrow \angle ADQ = \angle BCP = {90^ \circ }$
Therefore, both $\vartriangle ADQ$ and $\vartriangle BPC$ are right angled triangles.
Also, AQ=BP and DP=CQ
$ \Rightarrow DP + PQ = CQ + PQ$
$ \Rightarrow DQ = CP$
Now, in $\vartriangle ADQ$ and $\vartriangle BPC$,
$\angle ADQ = \angle BCP = {90^ \circ }$
AQ=BP (given)
DQ=CP
Therefore, $\vartriangle ADQ \cong \vartriangle BPC$ (by RHS rule of congruence)
Hence, $\angle DAQ = \angle CBP$ (corresponding parts of congruent triangles)
Note: The four rules of congruency are as follows:
SSS: When three sides of two different triangles are equal in length.
SAS: When two sides are equal, and the angle between them is also the same in measure.
AAS: When any two angles and a side is equal.
RHS: When the hypotenuse and any one side of two right angled triangles are equal in length.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE