
All squares are trapezium.
A). True
B). False
Answer
496.8k+ views
Hint: This question is a true or false type question. Given a statement that all the squares are trapezium. First, we need to state whether it is true or false or anything else and need to conclude with the explanation of the statement.
Complete step-by-step solution:
$\text{Square}$
$\text{TRAPEZIUM :-}$
True, All the squares are trapezium because all squares have pairs of parallel sides. A trapezium is a quadrilateral in which the pair of opposite sides are parallel. Similarly squares also have two pairs of parallel sides. A square is a parallelogram with all sides equal and also all angles are equal. The other properties of the squares are the two diagonals of the squares are equal to each other and it divides the square into two equal and similar isosceles triangles whereas in trapezium the diagonals bisect each other. The length of the diagonals will be greater than the sides of the square. But not all the squares are trapezium. In square all angles are 90° but and so in trapezium and also diagonals are perpendicular bisectors but they are not so in trapezium. Thus every square is a trapezium but only some trapezium is a square. Thus the statement is true.
Final answer :
All squares are trapezium.
Option A). True
Note: Square is the plane geometrical figure. To state whether it is true or false in this question, we should know the concept of types of quadrilaterals and the properties of trapezium. We also conclude that all squares are trapezium but only some trapezium are squares.
Complete step-by-step solution:
$\text{Square}$
$\text{TRAPEZIUM :-}$
True, All the squares are trapezium because all squares have pairs of parallel sides. A trapezium is a quadrilateral in which the pair of opposite sides are parallel. Similarly squares also have two pairs of parallel sides. A square is a parallelogram with all sides equal and also all angles are equal. The other properties of the squares are the two diagonals of the squares are equal to each other and it divides the square into two equal and similar isosceles triangles whereas in trapezium the diagonals bisect each other. The length of the diagonals will be greater than the sides of the square. But not all the squares are trapezium. In square all angles are 90° but and so in trapezium and also diagonals are perpendicular bisectors but they are not so in trapezium. Thus every square is a trapezium but only some trapezium is a square. Thus the statement is true.
Final answer :
All squares are trapezium.
Option A). True
Note: Square is the plane geometrical figure. To state whether it is true or false in this question, we should know the concept of types of quadrilaterals and the properties of trapezium. We also conclude that all squares are trapezium but only some trapezium are squares.
Recently Updated Pages
Master Class 8 Social Science: Engaging Questions & Answers for Success

Master Class 8 English: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 8 Maths: Engaging Questions & Answers for Success

Master Class 8 Science: Engaging Questions & Answers for Success

Master Class 7 English: Engaging Questions & Answers for Success

Trending doubts
Difference Between Plant Cell and Animal Cell

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Which places in India experience sunrise first and class 9 social science CBSE

Who is eligible for RTE class 9 social science CBSE

What is pollution? How many types of pollution? Define it

Name 10 Living and Non living things class 9 biology CBSE

