Answer
Verified
439.8k+ views
Hint : When the object is at a distance closer than the distance of the least distinct vision, we can use a microscope to view the object clearly. The angular magnification of a microscope is defined as the ratio of the angle subtended by the image after refraction from the microscope to the angle subtended by the object at an unaided eye/without the apparatus.
Complete step by step answer
The angular magnification is defined as follows:
${\text{M = }}\dfrac{{{\text{angle subtended by eye using instrument}}}}{{{\text{angle subtended at unaided eye}}}}$
When looking at a small object, as shown above, the angle subtended by the object at the unaided eye is very small and can be approximately written as
$\alpha = \dfrac{h}{d}$
When a lens is placed in between the object and the eye as is done in a simple microscope shown above, the angle subtended by the object will be
$\beta = \dfrac{H}{d}$
Since the image will be formed at the least distance of distinct vision $D$, i.e. $d = D$, the angular magnification can be defined as:
$M = \dfrac{\alpha }{\beta } = \dfrac{{H/D}}{{h/D}}$
$ \Rightarrow M = \dfrac{H}{h}$
Now from the lens-maker formula, we can write
$\dfrac{1}{v} - \dfrac{1}{u} = \dfrac{1}{f}$
We can rearrange the above equation to write,
\[\dfrac{v}{f} = 1 + \dfrac{v}{u}\]
Since the ratio of the image to the object position is also equal to magnification and we want the image to form at the least distance of distinct vision $D$ which is typically $25\,cm$, we can say $v/u = M$ and $v = D$ and hence write
$M = \dfrac{D}{f} - 1$
This is the magnification power for a simple microscope to form an image at the least distance of distinct vision of the observer.
Note
If the object is placed at infinity, the angle $\beta $ subtended by the object is the same with or without the lens as. Also, the image formed by the lens will be formed at a distance equal to the focal length of the lens. So $d = f$ and we can write
$\beta = \dfrac{h}{f}$
So,
$M = \dfrac{\alpha }{\beta } = \dfrac{{h/f}}{{h/D}}$
$ \Rightarrow M = \dfrac{D}{f}$
Complete step by step answer
The angular magnification is defined as follows:
${\text{M = }}\dfrac{{{\text{angle subtended by eye using instrument}}}}{{{\text{angle subtended at unaided eye}}}}$
When looking at a small object, as shown above, the angle subtended by the object at the unaided eye is very small and can be approximately written as
$\alpha = \dfrac{h}{d}$
When a lens is placed in between the object and the eye as is done in a simple microscope shown above, the angle subtended by the object will be
$\beta = \dfrac{H}{d}$
Since the image will be formed at the least distance of distinct vision $D$, i.e. $d = D$, the angular magnification can be defined as:
$M = \dfrac{\alpha }{\beta } = \dfrac{{H/D}}{{h/D}}$
$ \Rightarrow M = \dfrac{H}{h}$
Now from the lens-maker formula, we can write
$\dfrac{1}{v} - \dfrac{1}{u} = \dfrac{1}{f}$
We can rearrange the above equation to write,
\[\dfrac{v}{f} = 1 + \dfrac{v}{u}\]
Since the ratio of the image to the object position is also equal to magnification and we want the image to form at the least distance of distinct vision $D$ which is typically $25\,cm$, we can say $v/u = M$ and $v = D$ and hence write
$M = \dfrac{D}{f} - 1$
This is the magnification power for a simple microscope to form an image at the least distance of distinct vision of the observer.
Note
If the object is placed at infinity, the angle $\beta $ subtended by the object is the same with or without the lens as. Also, the image formed by the lens will be formed at a distance equal to the focal length of the lens. So $d = f$ and we can write
$\beta = \dfrac{h}{f}$
So,
$M = \dfrac{\alpha }{\beta } = \dfrac{{h/f}}{{h/D}}$
$ \Rightarrow M = \dfrac{D}{f}$
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Which is the first open university in India A Andhra class 10 physics CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE