
Energy gap between valence band and conduction band of a semiconductor is:
(A) zero
(B) infinite
(C) $1\,eV$
(D) $10\,eV$
Answer
133.8k+ views
Hint The semiconductors are the materials which have the property of conductivity between the conductors and the insulators, which means the semiconductor material partially conducting and partially nonconducting. The semiconductor materials are pure such as silicon and germanium or compounds such as gallium arsenide.
Complete step by step answer
Semiconductors are characterized by their extraordinary electric conductive property, somewhere close to that of a conduction and insulation. The difference between these materials can be identified from the quantum states for electrons, every one of which may contain zero or one electron (by the Pauli exclusion principle). These states are related with the electronic band structure of the material. Electrical conductivity emerges because of the presence of electrons in states that are delocalized (stretching out through the material), anyway to transport the electrons a state must be randomly filled, containing an electron just piece of the time. If the state is constantly busy with an electron, at that point it is inert. The energies of these quantum states are basic, since a state is halfway filled just if its energy is close to the Fermi level (see Fermi–Dirac measurements).
There are two types of semiconductor materials, they are n type semiconductor and p type semiconductor. In the n type semiconductor, there are a greater number of the electrons and a smaller number of the holes. In the p type semiconductor, there are a greater number of the holes and a smaller number of the electrons. The energy gap between the insulator is more than the $1\,eV$ and the energy gap between the conductor is less than the $1\,eV$ and the energy gap between the semiconductor is almost equal to the $1\,eV$.
Hence, the option (C) is the correct answer.
Note The energy gap of the semiconductor is almost equal to the $1\,eV$ and the energy gap value of the semiconductor is different for the different material. For example, the energy gap for the silicon semiconductor is $1.1\,eV$, and the energy gap value for the gallium arsenide is $1.41\,eV$.
Complete step by step answer
Semiconductors are characterized by their extraordinary electric conductive property, somewhere close to that of a conduction and insulation. The difference between these materials can be identified from the quantum states for electrons, every one of which may contain zero or one electron (by the Pauli exclusion principle). These states are related with the electronic band structure of the material. Electrical conductivity emerges because of the presence of electrons in states that are delocalized (stretching out through the material), anyway to transport the electrons a state must be randomly filled, containing an electron just piece of the time. If the state is constantly busy with an electron, at that point it is inert. The energies of these quantum states are basic, since a state is halfway filled just if its energy is close to the Fermi level (see Fermi–Dirac measurements).
There are two types of semiconductor materials, they are n type semiconductor and p type semiconductor. In the n type semiconductor, there are a greater number of the electrons and a smaller number of the holes. In the p type semiconductor, there are a greater number of the holes and a smaller number of the electrons. The energy gap between the insulator is more than the $1\,eV$ and the energy gap between the conductor is less than the $1\,eV$ and the energy gap between the semiconductor is almost equal to the $1\,eV$.
Hence, the option (C) is the correct answer.
Note The energy gap of the semiconductor is almost equal to the $1\,eV$ and the energy gap value of the semiconductor is different for the different material. For example, the energy gap for the silicon semiconductor is $1.1\,eV$, and the energy gap value for the gallium arsenide is $1.41\,eV$.
Recently Updated Pages
JEE Main 2025 Session 2 Form Correction (Closed) – What Can Be Edited

Sign up for JEE Main 2025 Live Classes - Vedantu

JEE Main Books 2023-24: Best JEE Main Books for Physics, Chemistry and Maths

JEE Main 2023 April 13 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 11 Shift 2 Question Paper with Answer Key

JEE Main 2023 April 10 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Wheatstone Bridge for JEE Main Physics 2025

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Diffraction of Light - Young’s Single Slit Experiment

Dual Nature of Radiation and Matter Class 12 Notes: CBSE Physics Chapter 11

If a wire of resistance R is stretched to double of class 12 physics JEE_Main

JEE Advanced 2024 Syllabus Weightage

Current Loop as Magnetic Dipole and Its Derivation for JEE
