Answer
Verified
433.5k+ views
Hint: When haloalkanes with $\text{ }\beta -\text{ }$ hydrogen atoms are boiled with an alcoholic solution of potassium hydroxide, they undergo the elimination of hydrogen halide $\text{ }\left( \text{HX} \right)\text{ }$ resulting in the formation of alkenes. These reactions are known as the dehydrohalogenation or $\text{ }\beta -\text{ }$ elimination reactions. The major product is obtained by Saytzeff’s rule.
Complete Solution :
When haloalkanes with $\text{ }\beta -\text{ }$ hydrogen atoms are boiled with an alcoholic solution of potassium hydroxide, they undergo the elimination of hydrogen halide $\text{ }\left( \text{HX} \right)\text{ }$ resulting in the formation of alkenes. The general reaction of the dehydrohalogenation of the haloalkanes is as shown below:
- These reactions are called the $\text{ }\beta -\text{ }$ elimination reactions because the hydrogen atom present at the $\text{ }\beta -\text{ }$ position of haloalkanes (i.e. at the carbon atom next to that which carries the halogen) is removed.
- These reactions are also known as the dehydrohalogenation reaction (removal of hydrogen halide) reactions. The elimination reaction occurs by the abstraction of a proton from a carbon atom next to the carbon bearing halogen atom and halide ion is also resulting in a new pi-bond.
- The 1-Bromobutane reacted with the alcoholic potassium hydroxide $\text{ KOH }$ .here, bromine (halogen group) is at the $\text{ }\alpha \text{ }$ position and hydrogen is at the $\text{ }\beta \text{ }$ position. when boiled with $\text{ KOH }$, hydrogen atom transfers its electron pair to the adjacent carbon-carbon bond, and bromide is removed from the molecule. This forms a double bond between the alpha and beta carbon atom and gives a1-butene as the product.
Thus, 1-Bromobutane on reaction with alcohol $\text{ KOH }$ gives 1-butene.
So, the correct answer is “Option A”.
Note: In the case of haloalkanes which has more than one $\text{ }\beta -\text{ }$ position can eliminate the hydrogen halide in two different ways, then that alkene will be preferred in which carbon atoms joined by the double bond are maximum alkylated i.e. contain the largest number of alkyl groups. This rule is called Saytzeff’s rule. The rule gives the major product formed in the $\text{ }\beta -\text{ }$ elimination reaction. Here ,1-bromobutane has one $\text{ }\beta -\text{ }$ position thus there would be only one major product.
Complete Solution :
When haloalkanes with $\text{ }\beta -\text{ }$ hydrogen atoms are boiled with an alcoholic solution of potassium hydroxide, they undergo the elimination of hydrogen halide $\text{ }\left( \text{HX} \right)\text{ }$ resulting in the formation of alkenes. The general reaction of the dehydrohalogenation of the haloalkanes is as shown below:
- These reactions are called the $\text{ }\beta -\text{ }$ elimination reactions because the hydrogen atom present at the $\text{ }\beta -\text{ }$ position of haloalkanes (i.e. at the carbon atom next to that which carries the halogen) is removed.
- These reactions are also known as the dehydrohalogenation reaction (removal of hydrogen halide) reactions. The elimination reaction occurs by the abstraction of a proton from a carbon atom next to the carbon bearing halogen atom and halide ion is also resulting in a new pi-bond.
- The 1-Bromobutane reacted with the alcoholic potassium hydroxide $\text{ KOH }$ .here, bromine (halogen group) is at the $\text{ }\alpha \text{ }$ position and hydrogen is at the $\text{ }\beta \text{ }$ position. when boiled with $\text{ KOH }$, hydrogen atom transfers its electron pair to the adjacent carbon-carbon bond, and bromide is removed from the molecule. This forms a double bond between the alpha and beta carbon atom and gives a1-butene as the product.
Thus, 1-Bromobutane on reaction with alcohol $\text{ KOH }$ gives 1-butene.
So, the correct answer is “Option A”.
Note: In the case of haloalkanes which has more than one $\text{ }\beta -\text{ }$ position can eliminate the hydrogen halide in two different ways, then that alkene will be preferred in which carbon atoms joined by the double bond are maximum alkylated i.e. contain the largest number of alkyl groups. This rule is called Saytzeff’s rule. The rule gives the major product formed in the $\text{ }\beta -\text{ }$ elimination reaction. Here ,1-bromobutane has one $\text{ }\beta -\text{ }$ position thus there would be only one major product.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
Write the difference between order and molecularity class 11 maths CBSE
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
What are noble gases Why are they also called inert class 11 chemistry CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between calcination and roasting class 11 chemistry CBSE