Answer
Verified
442.2k+ views
Hint: In this question, we have been asked the number of faces, edges and vertices a pyramid has.
To solve this question, we need basic idea about faces, edges and vertices of a three dimensional figure. Let's see the below labelled diagram of cuboid.
Observe that the above cuboid has 6 faces, 8 edges and 12 vertices.
Similarly, A pyramid is a 3 dimensional figure and the number of edges, faces and vertices depends on the sides of the base.
Moreover, we are not given any particular base of the pyramid. We have been asked the general formula with side ‘n’.
Complete step-by-step answer:
We have been asked the number of faces, edges and vertices of a pyramid whose base is unknown. We have to find a generalized formula in terms of ‘n’.
Before finding a generalized formula, let us look at certain pictures of a pyramid with different bases and find their faces, edges and vertices. Using them, we will derive the generalized formula.
1) Faces:
(i) Pyramid with 3-sided base: This pyramid has 4 faces. One face which is the base and 3 faces connecting the base with the apex (top most vertex).
(ii) Pyramid with 4-sided base: This pyramid has 5 faces. One face as the base and other 4 faces connecting the base with the apex.
As we can notice, the total faces are one more than the number of sides of the base. Therefore, a pyramid with ‘n’ sided polygon as base will have $\left( {n + 1} \right)$ faces.
Complete step-by-step answer:
We have been asked the number of faces, edges and vertices of a pyramid whose base is unknown. We have to find a generalized formula in terms of ‘n’.
Before finding a generalized formula, let us look at certain pictures of a pyramid with different bases and find their faces, edges and vertices. Using them, we will derive the generalized formula.
1) Faces:
(i) Pyramid with 3-sided base: This pyramid has 4 faces. One face which is the base and 3 faces connecting the base with the apex (top most vertex).
(ii) Pyramid with 4-sided base: This pyramid has 5 faces. One face as the base and other 4 faces connecting the base with the apex.
As we can notice, the total faces are one more than the number of sides of the base. Therefore, a pyramid with ‘n’ sided polygon as base will have $\left( {n + 1} \right)$ faces.
2) Edges:
(i) Pyramid with 3-sided base: This pyramid has 6 edges – 3 edges making up the polygon as base and other 3 edges connecting the base to the apex.
(ii) Pyramid with 4-sided base: This pyramid has 8 edges – 4 edges making up the polygon as base and other 4 edges connecting the base to the apex.
If you will observe, the total edges are twice the number of sides of the base. Therefore, a pyramid with an ‘n’ sided polygon as base will have ($2n$) edges.
(i) Pyramid with 3-sided base: This pyramid has 6 edges – 3 edges making up the polygon as base and other 3 edges connecting the base to the apex.
(ii) Pyramid with 4-sided base: This pyramid has 8 edges – 4 edges making up the polygon as base and other 4 edges connecting the base to the apex.
If you will observe, the total edges are twice the number of sides of the base. Therefore, a pyramid with an ‘n’ sided polygon as base will have ($2n$) edges.
3) Vertices:
(i) Pyramid with 3-sided base: This pyramid has 4 vertices – 3 vertices of the base and 1 apex.
(ii) Pyramid with 4-sided base: This pyramid has 5 vertices – 4 vertices of the base and 1 apex.
On observation, we can tell that the total vertices are one more than the number of sides of the base.
Therefore, a pyramid with ‘n’ sided polygon as base will have $\left( {n + 1} \right)$ vertices.
Note: We can observe that a pyramid is a polyhedron formed by connecting a polygonal base and a point, called the apex. Each base edge and apex form a triangle, called a lateral face. It is a conic solid with a polygonal base. A pyramid is usually assumed to be a regular square pyramid, like the physical pyramid structures. A triangle based pyramid is more often called a tetrahedron.
(i) Pyramid with 3-sided base: This pyramid has 4 vertices – 3 vertices of the base and 1 apex.
(ii) Pyramid with 4-sided base: This pyramid has 5 vertices – 4 vertices of the base and 1 apex.
On observation, we can tell that the total vertices are one more than the number of sides of the base.
Therefore, a pyramid with ‘n’ sided polygon as base will have $\left( {n + 1} \right)$ vertices.
Note: We can observe that a pyramid is a polyhedron formed by connecting a polygonal base and a point, called the apex. Each base edge and apex form a triangle, called a lateral face. It is a conic solid with a polygonal base. A pyramid is usually assumed to be a regular square pyramid, like the physical pyramid structures. A triangle based pyramid is more often called a tetrahedron.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
What is BLO What is the full form of BLO class 8 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE