
Find $\int\limits_0^{\dfrac{1}{2}} {\dfrac{{dx}}{{(1 + {x^2})\sqrt {1 - {x^2}} }}} $ is equal to
1) $\dfrac{1}{{\sqrt 2 }}{\tan ^{ - 1}}\left( {\sqrt {\dfrac{2}{3}} } \right) + C$
2) $\dfrac{2}{{\sqrt 2 }}{\tan ^{ - 1}}\left( {\dfrac{3}{{\sqrt 2 }}} \right) + C$
3) $\dfrac{2}{{\sqrt 2 }}{\tan ^{ - 1}}\left( {\dfrac{3}{2}} \right) + C$
4) $\dfrac{2}{{\sqrt 2 }}{\tan ^{ - 1}}\left( {\dfrac{{\sqrt 3 }}{2}} \right) + C$
Answer
554.1k+ views
Hint: In the above problem substitution method is used to reduce the given definite integration.
In place of the variable x we will substitute the value of $\sin \theta $ to reduce the given integral in the simplified form, which is called the substitution method.
Using the substitution method we will solve the given problem.
Complete step by step answer:
Let's do the substitution of the x variable and then we will solve the problem.
$ \Rightarrow \int\limits_0^{\dfrac{1}{2}} {\dfrac{{dx}}{{(1 + {x^2})\sqrt {1 - {x^2}} }}} $(given integral)
Let's keep $x = \sin \theta $ , therefore limits of the integration will also going to be changed,
$ \Rightarrow {\sin ^{ - 1}}x = \theta $ , when x = 0 ,$\theta $ also equals to zero, x =1/2, $\theta $=${30^0}$
$ \Rightarrow \int\limits_0^{\dfrac{\pi }{6}} {\dfrac{{\cos \theta d\theta }}{{(1 + {{\sin }^2}\theta )\sqrt {(1 - {{\sin }^2}\theta )} }}} $ (we will cancel both the cosine terms of the numerator and denominator)
$ \Rightarrow \int\limits_0^{\dfrac{\pi }{6}} {\dfrac{{\cos \theta d\theta }}{{(1 + {{\sin }^2}\theta )\cos \theta }}} $ (${\cos ^2}\theta = 1 - {\sin ^2}\theta $)
$ \Rightarrow \int\limits_0^{\dfrac{\pi }{6}} {\dfrac{{d\theta }}{{(1 + {{\sin }^2}\theta )}}} $(we will multiply both numerator and denominator by ${\sec ^2}\theta $ )
$ \Rightarrow \int\limits_0^{\dfrac{\pi }{6}} {\dfrac{{{{\sec }^2}\theta d\theta }}{{({{\sec }^2}\theta + {{\sec }^2}\theta {{\sin }^2}\theta )}}} $
$ \Rightarrow \int\limits_0^{\dfrac{\pi }{6}} {\dfrac{{{{\sec }^2}\theta d\theta }}{{({{\sec }^2}\theta + {{\tan }^2}\theta )}}} ({\sec ^2}\theta \; is \;the \;reciprocal \;of \;{\cos ^2}\theta )$
$ \Rightarrow \int\limits_0^{\dfrac{\pi }{6}} {\dfrac{{{{\sec }^2}\theta d\theta }}{{(1 + 2{{\tan }^2}\theta )}}} $(${\sec ^2}\theta $=$1 + {\tan ^2}\theta $ )
Now, we replace tan$\theta $ as u,
$ \Rightarrow \tan \theta = u,\theta = 0$
$ \Rightarrow u = 0$
When $\tan \dfrac{\pi }{6},u = \dfrac{1}{{\sqrt 3 }}$
$ \Rightarrow \int\limits_0^{\dfrac{1}{{\sqrt 3 }}} {\dfrac{{du}}{{(1 + 2{u^2})}}} $ (we will take 2 common out of the denominator)
$ \Rightarrow \int\limits_0^{\dfrac{1}{{\sqrt 3 }}} {\dfrac{{du}}{{2(\dfrac{1}{2} + {u^2})}}} $(We will apply the direct formula of $\dfrac{1}{a}{\tan ^{ - 1}}\dfrac{u}{a}$ , a is the constant here)
$ \Rightarrow \int\limits_0^{\dfrac{1}{{\sqrt 3 }}} {\dfrac{{du}}{{2({{\left( {\dfrac{1}{{\sqrt 2 }}} \right)}^2} + {u^2})}}} $
$ \Rightarrow [\dfrac{1}{2} \times \dfrac{1}{{\dfrac{1}{{\sqrt 2 }}}}{\tan ^{ - 1}}\left( {\dfrac{{\dfrac{1}{{\sqrt 3 }}}}{{\dfrac{1}{{\sqrt 2 }}}}} \right) - \dfrac{1}{2} \times \dfrac{1}{{\dfrac{1}{{\sqrt 2 }}}}{\tan ^{ - 1}}\left( {\dfrac{0}{{\dfrac{1}{{\sqrt 2 }}}}} \right)]$
We have substituted the limits in the formula of integration, we obtain
$ \Rightarrow \dfrac{1}{{\sqrt 2 }}{\tan ^{ - 1}}\left( {\sqrt {\dfrac{2}{3}} } \right) + C$
So, the correct answer is Option 1.
Note: Integration has another method to solve the problem when two functions are simultaneously given which is called Integration by parts. It has many other applications in problem solving such as in deriving the Euler-Lagrange equation, for determining the boundary conditions in Sturm-Liouville theory, it is used in operator theory, decay of Fourier transform, Fourier transform of derivative, used in harmonics analysis, to find the gamma function identity etc.
In place of the variable x we will substitute the value of $\sin \theta $ to reduce the given integral in the simplified form, which is called the substitution method.
Using the substitution method we will solve the given problem.
Complete step by step answer:
Let's do the substitution of the x variable and then we will solve the problem.
$ \Rightarrow \int\limits_0^{\dfrac{1}{2}} {\dfrac{{dx}}{{(1 + {x^2})\sqrt {1 - {x^2}} }}} $(given integral)
Let's keep $x = \sin \theta $ , therefore limits of the integration will also going to be changed,
$ \Rightarrow {\sin ^{ - 1}}x = \theta $ , when x = 0 ,$\theta $ also equals to zero, x =1/2, $\theta $=${30^0}$
$ \Rightarrow \int\limits_0^{\dfrac{\pi }{6}} {\dfrac{{\cos \theta d\theta }}{{(1 + {{\sin }^2}\theta )\sqrt {(1 - {{\sin }^2}\theta )} }}} $ (we will cancel both the cosine terms of the numerator and denominator)
$ \Rightarrow \int\limits_0^{\dfrac{\pi }{6}} {\dfrac{{\cos \theta d\theta }}{{(1 + {{\sin }^2}\theta )\cos \theta }}} $ (${\cos ^2}\theta = 1 - {\sin ^2}\theta $)
$ \Rightarrow \int\limits_0^{\dfrac{\pi }{6}} {\dfrac{{d\theta }}{{(1 + {{\sin }^2}\theta )}}} $(we will multiply both numerator and denominator by ${\sec ^2}\theta $ )
$ \Rightarrow \int\limits_0^{\dfrac{\pi }{6}} {\dfrac{{{{\sec }^2}\theta d\theta }}{{({{\sec }^2}\theta + {{\sec }^2}\theta {{\sin }^2}\theta )}}} $
$ \Rightarrow \int\limits_0^{\dfrac{\pi }{6}} {\dfrac{{{{\sec }^2}\theta d\theta }}{{({{\sec }^2}\theta + {{\tan }^2}\theta )}}} ({\sec ^2}\theta \; is \;the \;reciprocal \;of \;{\cos ^2}\theta )$
$ \Rightarrow \int\limits_0^{\dfrac{\pi }{6}} {\dfrac{{{{\sec }^2}\theta d\theta }}{{(1 + 2{{\tan }^2}\theta )}}} $(${\sec ^2}\theta $=$1 + {\tan ^2}\theta $ )
Now, we replace tan$\theta $ as u,
$ \Rightarrow \tan \theta = u,\theta = 0$
$ \Rightarrow u = 0$
When $\tan \dfrac{\pi }{6},u = \dfrac{1}{{\sqrt 3 }}$
$ \Rightarrow \int\limits_0^{\dfrac{1}{{\sqrt 3 }}} {\dfrac{{du}}{{(1 + 2{u^2})}}} $ (we will take 2 common out of the denominator)
$ \Rightarrow \int\limits_0^{\dfrac{1}{{\sqrt 3 }}} {\dfrac{{du}}{{2(\dfrac{1}{2} + {u^2})}}} $(We will apply the direct formula of $\dfrac{1}{a}{\tan ^{ - 1}}\dfrac{u}{a}$ , a is the constant here)
$ \Rightarrow \int\limits_0^{\dfrac{1}{{\sqrt 3 }}} {\dfrac{{du}}{{2({{\left( {\dfrac{1}{{\sqrt 2 }}} \right)}^2} + {u^2})}}} $
$ \Rightarrow [\dfrac{1}{2} \times \dfrac{1}{{\dfrac{1}{{\sqrt 2 }}}}{\tan ^{ - 1}}\left( {\dfrac{{\dfrac{1}{{\sqrt 3 }}}}{{\dfrac{1}{{\sqrt 2 }}}}} \right) - \dfrac{1}{2} \times \dfrac{1}{{\dfrac{1}{{\sqrt 2 }}}}{\tan ^{ - 1}}\left( {\dfrac{0}{{\dfrac{1}{{\sqrt 2 }}}}} \right)]$
We have substituted the limits in the formula of integration, we obtain
$ \Rightarrow \dfrac{1}{{\sqrt 2 }}{\tan ^{ - 1}}\left( {\sqrt {\dfrac{2}{3}} } \right) + C$
So, the correct answer is Option 1.
Note: Integration has another method to solve the problem when two functions are simultaneously given which is called Integration by parts. It has many other applications in problem solving such as in deriving the Euler-Lagrange equation, for determining the boundary conditions in Sturm-Liouville theory, it is used in operator theory, decay of Fourier transform, Fourier transform of derivative, used in harmonics analysis, to find the gamma function identity etc.
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

State the principle of an ac generator and explain class 12 physics CBSE

Give 10 examples of unisexual and bisexual flowers

