Answer
Verified
419.1k+ views
Hint:To solve this following question, we will first find the derivation using the power rule. And, then fix an interval and check on which point the given function is decreasing or at which point the function is decreasing.
Complete step by step answer:
Firstly, we are going to perform the first derivative test here:
We initialize by differentiate using the Power Rule:
$\dfrac{d}{{dx}}{x^n} = n{x^{n - 1}}$
$\Rightarrow \dfrac{d}{{dx}} = - 2(2){x^{2 - 1}} + 4(1){x^{1 - 1}} + 0$
As we know that, ${x^0} = 1$ and also know that the derivative of a constant is zero.
${f^1}(x) = - 4x + 4$
Now we want to factor and set it equal to zero:
$ - 4(x - 1) = 0$
$ \Rightarrow x - 1 = 0$
$\Rightarrow x = 1$
Now, we create a test an interval from $( - \infty ,1) \cup (1,\infty )$
Now we pick numbers in between the interval and test them in the derivative. If the number is positive this means the function is increasing and if it’s negative the function is decreasing.
Pick 0 a number from the left:
$f'(0) = 4$
This means from $(\infty ,1)$ the function is increasing.
Then I picked a number from the right which was 2.
${f^1}(2) = - 4$
This means from $( - \infty ,1)$ , the function is decreasing.
So, from $(\infty ,1)$ the function is increasing and from $( - \infty ,1)$ the function is decreasing.
Note:For this exact reason, we can say that there’s an absolute max at $f(1)$ . We can say this because it's only a parabola. The section of a parabola that shows a falling curve with decrease in the y values of the graph is known as the decreasing interval of the quadratic function.
Complete step by step answer:
Firstly, we are going to perform the first derivative test here:
We initialize by differentiate using the Power Rule:
$\dfrac{d}{{dx}}{x^n} = n{x^{n - 1}}$
$\Rightarrow \dfrac{d}{{dx}} = - 2(2){x^{2 - 1}} + 4(1){x^{1 - 1}} + 0$
As we know that, ${x^0} = 1$ and also know that the derivative of a constant is zero.
${f^1}(x) = - 4x + 4$
Now we want to factor and set it equal to zero:
$ - 4(x - 1) = 0$
$ \Rightarrow x - 1 = 0$
$\Rightarrow x = 1$
Now, we create a test an interval from $( - \infty ,1) \cup (1,\infty )$
Now we pick numbers in between the interval and test them in the derivative. If the number is positive this means the function is increasing and if it’s negative the function is decreasing.
Pick 0 a number from the left:
$f'(0) = 4$
This means from $(\infty ,1)$ the function is increasing.
Then I picked a number from the right which was 2.
${f^1}(2) = - 4$
This means from $( - \infty ,1)$ , the function is decreasing.
So, from $(\infty ,1)$ the function is increasing and from $( - \infty ,1)$ the function is decreasing.
Note:For this exact reason, we can say that there’s an absolute max at $f(1)$ . We can say this because it's only a parabola. The section of a parabola that shows a falling curve with decrease in the y values of the graph is known as the decreasing interval of the quadratic function.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Who gave the slogan Jai Hind ALal Bahadur Shastri BJawaharlal class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE