![SearchIcon](https://vmkt.vedantu.com/vmkt/PROD/png/bdcdbbd8-08a7-4688-98e6-4aa54e5e0800-1733305962725-4102606384256179.png)
Find the least value of $3x + 4y$if ${x^2}{y^3} = 6$.
Answer
410.1k+ views
Hint: In the above question it is given that ${x^2}{y^3}$. So on the basis of this we will break down the term of $x$ in twice as there is ${x^2}$. So similarly we will break the term of $y$ in three parts as it is given that ${y^3}$. Now we have to find the minimum value of $3x + 4y$. So we will use the property of arithmetic mean and geometric mean to solve this question.
Complete step-by-step answer:
We will break the term $3x$ into $\dfrac{{3x}}{2},\dfrac{{3x}}{2}$ and we will break the another term $4y = \dfrac{{4y}}{3},\dfrac{{4y}}{3},\dfrac{{4y}}{3}$.
Now we will use the property of arithmetic mean (AM) and geometric mean (GM) . It says that $AM \geqslant GM$.
We know that formula of arithmetic mean is i.e. $\overline X = \dfrac{{\sum\limits_{i = 1}^n {{X_i}} }}{N}$, where $N$ is the total number of observations, here we have $N = 5$. Now applying the formula we solve it.
So we have AM of the above terms is
$AM = \dfrac{{\dfrac{{3x}}{2} + \dfrac{{3x}}{2} + \dfrac{{4y}}{3} + \dfrac{{4y}}{3} + \dfrac{{4y}}{3}}}{5}$.
We have to add all these terms so, by taking the LCM of the denominator and adding we have the value
$AM = \dfrac{{\dfrac{{9x + 9x + 8y + 8y + 8y}}{6}}}{5} = \dfrac{{\dfrac{{6(3x + 4y)}}{6}}}{5}$.
We have taken the common factor out in the numerator and then it gets cancelled with the denominator, so it gives us $\dfrac{{3x + 4y}}{5}$.
Now we will calculate the value of
GM$ = {\left( {\dfrac{3}{2} \times \dfrac{3}{2} \times \dfrac{4}{3} \times \dfrac{4}{3} \times \dfrac{4}{3}} \right)^{\dfrac{1}{5}}}$. On further solving we have ${(2 \times 2 \times 2 \times 2 \times 2)^{\dfrac{1}{5}}} = {2^{5 \times \dfrac{1}{5}}}$.
It gives us the value $GM = 2$.
Now by putting the values back in the formula we have: $\dfrac{{3x + 4y}}{5} \geqslant 2$, on solving we have $3x + 4y \geqslant 2 \times 5 \Rightarrow 3x + 4y \geqslant 10$. Here we can see that the value of $3x + 4y$ has to be greater or equal to $10$, it cannot be less than it.
Hence we can say that the minimum value of $3x + 4y$ is $10$.
So, the correct answer is “10”.
Note: We should know that if in AM, there is set of numbers ${a_1},{a_2},{a_3}...{a_n}$, then the value of AM is $\left( {\dfrac{{{a_1} + {a_2} + {a_3} + ...{a_n}}}{n}} \right)$, where $n$ is the number of terms. Similarly in G.M if set of values as ${a_1},{a_2},{a_3}...{a_n}$, then the $GM = {\left( {{a_1} \times {a_2} \times {a_3}...{a_n}} \right)^{\dfrac{1}{n}}}$, where $n$ is the number of terms. There is an inequality relation between the AM and GM , greater than equal to i.e. $AM \geqslant GM$.
Complete step-by-step answer:
We will break the term $3x$ into $\dfrac{{3x}}{2},\dfrac{{3x}}{2}$ and we will break the another term $4y = \dfrac{{4y}}{3},\dfrac{{4y}}{3},\dfrac{{4y}}{3}$.
Now we will use the property of arithmetic mean (AM) and geometric mean (GM) . It says that $AM \geqslant GM$.
We know that formula of arithmetic mean is i.e. $\overline X = \dfrac{{\sum\limits_{i = 1}^n {{X_i}} }}{N}$, where $N$ is the total number of observations, here we have $N = 5$. Now applying the formula we solve it.
So we have AM of the above terms is
$AM = \dfrac{{\dfrac{{3x}}{2} + \dfrac{{3x}}{2} + \dfrac{{4y}}{3} + \dfrac{{4y}}{3} + \dfrac{{4y}}{3}}}{5}$.
We have to add all these terms so, by taking the LCM of the denominator and adding we have the value
$AM = \dfrac{{\dfrac{{9x + 9x + 8y + 8y + 8y}}{6}}}{5} = \dfrac{{\dfrac{{6(3x + 4y)}}{6}}}{5}$.
We have taken the common factor out in the numerator and then it gets cancelled with the denominator, so it gives us $\dfrac{{3x + 4y}}{5}$.
Now we will calculate the value of
GM$ = {\left( {\dfrac{3}{2} \times \dfrac{3}{2} \times \dfrac{4}{3} \times \dfrac{4}{3} \times \dfrac{4}{3}} \right)^{\dfrac{1}{5}}}$. On further solving we have ${(2 \times 2 \times 2 \times 2 \times 2)^{\dfrac{1}{5}}} = {2^{5 \times \dfrac{1}{5}}}$.
It gives us the value $GM = 2$.
Now by putting the values back in the formula we have: $\dfrac{{3x + 4y}}{5} \geqslant 2$, on solving we have $3x + 4y \geqslant 2 \times 5 \Rightarrow 3x + 4y \geqslant 10$. Here we can see that the value of $3x + 4y$ has to be greater or equal to $10$, it cannot be less than it.
Hence we can say that the minimum value of $3x + 4y$ is $10$.
So, the correct answer is “10”.
Note: We should know that if in AM, there is set of numbers ${a_1},{a_2},{a_3}...{a_n}$, then the value of AM is $\left( {\dfrac{{{a_1} + {a_2} + {a_3} + ...{a_n}}}{n}} \right)$, where $n$ is the number of terms. Similarly in G.M if set of values as ${a_1},{a_2},{a_3}...{a_n}$, then the $GM = {\left( {{a_1} \times {a_2} \times {a_3}...{a_n}} \right)^{\dfrac{1}{n}}}$, where $n$ is the number of terms. There is an inequality relation between the AM and GM , greater than equal to i.e. $AM \geqslant GM$.
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Master Class 9 English: Engaging Questions & Answers for Success
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Master Class 9 Science: Engaging Questions & Answers for Success
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Master Class 9 Social Science: Engaging Questions & Answers for Success
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Master Class 9 Maths: Engaging Questions & Answers for Success
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Class 9 Question and Answer - Your Ultimate Solutions Guide
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
How do you graph the function fx 4x class 9 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Name the states which share their boundary with Indias class 9 social science CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Difference Between Plant Cell and Animal Cell
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
What is pollution? How many types of pollution? Define it
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
What is the color of ferrous sulphate crystals? How does this color change after heating? Name the products formed on strongly heating ferrous sulphate crystals. What type of chemical reaction occurs in this type of change.
![arrow-right](/cdn/images/seo-templates/arrow-right.png)