Answer
Verified
448.2k+ views
Hint: Here, we need to find the sum of the given numbers. We will rearrange the numbers in the sun, and rewrite the expression. Then, we will convert the subtraction to addition using parentheses, and simplify to get the sum of the given numbers.
Complete step-by-step answer:
First, we will rewrite the negative integers in the given numbers.
The number \[ - x\] can be written as the product of the negative integer \[ - 1\], and the positive integer \[x\].
Therefore, rewriting the numbers \[ - 59\], \[ - 41\], \[ - 92\], \[ - \left( { - 41} \right)\], \[ - 3\], we get
\[ - 59 = \left( { - 1 \times 59} \right)\]
\[ - 41 = \left( { - 1 \times 41} \right)\]
\[ - 92 = \left( { - 1 \times 92} \right)\]
\[ - 3 = \left( { - 1 \times 3} \right)\]
\[ - \left( { - 41} \right) = \left[ { - 1 \times \left( { - 41} \right)} \right] = - 1 \times - 1 \times 41\]
We know that \[{\left( { - 1} \right)^n}\] is equal to 1 if \[n\] is an even number, and is equal to \[ - 1\] if \[n\] is an odd number.
Therefore, we get
\[ \Rightarrow - \left( { - 41} \right) = {\left( { - 1} \right)^2} \times 41 = 1 \times 41 = 41\]
Now, we will find the sum of the given numbers.
Writing the sum of the numbers as an expression, we get
\[\left( { - 59} \right) + \left( { - 41} \right) + 73 + \left( { - 92} \right) + 81 + \left[ { - \left( { - 41} \right)} \right] + \left( { - 3} \right)\]
Substituting \[ - \left( { - 41} \right) = 41\] in the expression, we get
\[ \Rightarrow \left( { - 59} \right) + \left( { - 41} \right) + 73 + \left( { - 92} \right) + 81 + \left[ { - \left( { - 41} \right)} \right] + \left( { - 3} \right) = \left( { - 59} \right) + \left( { - 41} \right) + 73 + \left( { - 92} \right) + 81 + 41 + \left( { - 3} \right)\]
Rearranging the terms of the expression, we get
\[ \Rightarrow \left( { - 59} \right) + \left( { - 41} \right) + 73 + \left( { - 92} \right) + 81 + \left[ { - \left( { - 41} \right)} \right] + \left( { - 3} \right) = 73 + 81 + 41 + \left( { - 59} \right) + \left( { - 41} \right) + \left( { - 92} \right) + \left( { - 3} \right)\]
\[ \Rightarrow \left( { - 59} \right) + \left( { - 41} \right) + 73 + \left( { - 92} \right) + 81 + \left[ { - \left( { - 41} \right)} \right] + \left( { - 3} \right) = 195 + \left( { - 59} \right) + \left( { - 41} \right) + \left( { - 92} \right) + \left( { - 3} \right)\]
Substituting \[ - 59 = \left( { - 1 \times 59} \right)\], \[ - 41 = \left( { - 1 \times 41} \right)\], \[ - 92 = \left( { - 1 \times 92} \right)\], and \[ - 3 = \left( { - 1 \times 3} \right)\] in the expression, we get
\[ \Rightarrow \left( { - 59} \right) + \left( { - 41} \right) + 73 + \left( { - 92} \right) + 81 + \left[ { - \left( { - 41} \right)} \right] + \left( { - 3} \right) = 195 + \left( { - 1 \times 59} \right) + \left( { - 1 \times 41} \right) + \left( { - 1 \times 92} \right) + \left( { - 1 \times 3} \right)\]
Converting subtraction to addition by factoring out \[ - 1\], we get
\[\begin{array}{l} \Rightarrow \left( { - 59} \right) + \left( { - 41} \right) + 73 + \left( { - 92} \right) + 81 + \left[ { - \left( { - 41} \right)} \right] + \left( { - 3} \right) = 195 + \left( { - 1} \right)\left( {59 + 41 + 92 + 3} \right)\\ \Rightarrow \left( { - 59} \right) + \left( { - 41} \right) + 73 + \left( { - 92} \right) + 81 + \left[ { - \left( { - 41} \right)} \right] + \left( { - 3} \right) = 195 - \left( {59 + 41 + 92 + 3} \right)\end{array}\]
Adding the terms of the expression, we get
\[ \Rightarrow \left( { - 59} \right) + \left( { - 41} \right) + 73 + \left( { - 92} \right) + 81 + \left[ { - \left( { - 41} \right)} \right] + \left( { - 3} \right) = 195 - 195\]
Subtracting 195 from 195, we get
\[\therefore \left( -59 \right)+\left( -41 \right)+73+\left( -92 \right)+81+\left[ -\left( -41 \right) \right]+\left( -3 \right)=0\]
Therefore, we get the sum of the numbers \[ - 59\], \[ - 41\], 73, \[ - 92\], 81, \[ - \left( { - 41} \right)\], and \[ - 3\] as 0.
Note: We used the term ‘negative integer’ in the solution. An integer is a rational number that is not a fraction. For example: 1, \[ - 1\], 3, \[ - 7\], are integers. Integers can be positive or negative. Negative integers are the numbers \[ - 1\], \[ - 5\], \[ - 92\], \[ - 41\], etc.
We can also solve this question by making different pairs of numbers. We can make the pairs such that it is easy to add and subtract the terms, and thus, simplify the sum. The answer will be the same.
Complete step-by-step answer:
First, we will rewrite the negative integers in the given numbers.
The number \[ - x\] can be written as the product of the negative integer \[ - 1\], and the positive integer \[x\].
Therefore, rewriting the numbers \[ - 59\], \[ - 41\], \[ - 92\], \[ - \left( { - 41} \right)\], \[ - 3\], we get
\[ - 59 = \left( { - 1 \times 59} \right)\]
\[ - 41 = \left( { - 1 \times 41} \right)\]
\[ - 92 = \left( { - 1 \times 92} \right)\]
\[ - 3 = \left( { - 1 \times 3} \right)\]
\[ - \left( { - 41} \right) = \left[ { - 1 \times \left( { - 41} \right)} \right] = - 1 \times - 1 \times 41\]
We know that \[{\left( { - 1} \right)^n}\] is equal to 1 if \[n\] is an even number, and is equal to \[ - 1\] if \[n\] is an odd number.
Therefore, we get
\[ \Rightarrow - \left( { - 41} \right) = {\left( { - 1} \right)^2} \times 41 = 1 \times 41 = 41\]
Now, we will find the sum of the given numbers.
Writing the sum of the numbers as an expression, we get
\[\left( { - 59} \right) + \left( { - 41} \right) + 73 + \left( { - 92} \right) + 81 + \left[ { - \left( { - 41} \right)} \right] + \left( { - 3} \right)\]
Substituting \[ - \left( { - 41} \right) = 41\] in the expression, we get
\[ \Rightarrow \left( { - 59} \right) + \left( { - 41} \right) + 73 + \left( { - 92} \right) + 81 + \left[ { - \left( { - 41} \right)} \right] + \left( { - 3} \right) = \left( { - 59} \right) + \left( { - 41} \right) + 73 + \left( { - 92} \right) + 81 + 41 + \left( { - 3} \right)\]
Rearranging the terms of the expression, we get
\[ \Rightarrow \left( { - 59} \right) + \left( { - 41} \right) + 73 + \left( { - 92} \right) + 81 + \left[ { - \left( { - 41} \right)} \right] + \left( { - 3} \right) = 73 + 81 + 41 + \left( { - 59} \right) + \left( { - 41} \right) + \left( { - 92} \right) + \left( { - 3} \right)\]
\[ \Rightarrow \left( { - 59} \right) + \left( { - 41} \right) + 73 + \left( { - 92} \right) + 81 + \left[ { - \left( { - 41} \right)} \right] + \left( { - 3} \right) = 195 + \left( { - 59} \right) + \left( { - 41} \right) + \left( { - 92} \right) + \left( { - 3} \right)\]
Substituting \[ - 59 = \left( { - 1 \times 59} \right)\], \[ - 41 = \left( { - 1 \times 41} \right)\], \[ - 92 = \left( { - 1 \times 92} \right)\], and \[ - 3 = \left( { - 1 \times 3} \right)\] in the expression, we get
\[ \Rightarrow \left( { - 59} \right) + \left( { - 41} \right) + 73 + \left( { - 92} \right) + 81 + \left[ { - \left( { - 41} \right)} \right] + \left( { - 3} \right) = 195 + \left( { - 1 \times 59} \right) + \left( { - 1 \times 41} \right) + \left( { - 1 \times 92} \right) + \left( { - 1 \times 3} \right)\]
Converting subtraction to addition by factoring out \[ - 1\], we get
\[\begin{array}{l} \Rightarrow \left( { - 59} \right) + \left( { - 41} \right) + 73 + \left( { - 92} \right) + 81 + \left[ { - \left( { - 41} \right)} \right] + \left( { - 3} \right) = 195 + \left( { - 1} \right)\left( {59 + 41 + 92 + 3} \right)\\ \Rightarrow \left( { - 59} \right) + \left( { - 41} \right) + 73 + \left( { - 92} \right) + 81 + \left[ { - \left( { - 41} \right)} \right] + \left( { - 3} \right) = 195 - \left( {59 + 41 + 92 + 3} \right)\end{array}\]
Adding the terms of the expression, we get
\[ \Rightarrow \left( { - 59} \right) + \left( { - 41} \right) + 73 + \left( { - 92} \right) + 81 + \left[ { - \left( { - 41} \right)} \right] + \left( { - 3} \right) = 195 - 195\]
Subtracting 195 from 195, we get
\[\therefore \left( -59 \right)+\left( -41 \right)+73+\left( -92 \right)+81+\left[ -\left( -41 \right) \right]+\left( -3 \right)=0\]
Therefore, we get the sum of the numbers \[ - 59\], \[ - 41\], 73, \[ - 92\], 81, \[ - \left( { - 41} \right)\], and \[ - 3\] as 0.
Note: We used the term ‘negative integer’ in the solution. An integer is a rational number that is not a fraction. For example: 1, \[ - 1\], 3, \[ - 7\], are integers. Integers can be positive or negative. Negative integers are the numbers \[ - 1\], \[ - 5\], \[ - 92\], \[ - 41\], etc.
We can also solve this question by making different pairs of numbers. We can make the pairs such that it is easy to add and subtract the terms, and thus, simplify the sum. The answer will be the same.
Recently Updated Pages
A wire of length L and radius r is clamped rigidly class 11 physics JEE_Main
For which of the following reactions H is equal to class 11 chemistry JEE_Main
For the redox reaction MnO4 + C2O42 + H + to Mn2 + class 11 chemistry JEE_Main
In the reaction 2FeCl3 + H2S to 2FeCl2 + 2HCl + S class 11 chemistry JEE_Main
One mole of a nonideal gas undergoes a change of state class 11 chemistry JEE_Main
A stone is projected with speed 20 ms at angle 37circ class 11 physics JEE_Main
Trending doubts
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which is the longest day and shortest night in the class 11 sst CBSE
Who was the Governor general of India at the time of class 11 social science CBSE
Why is steel more elastic than rubber class 11 physics CBSE
The term ISWM refers to A Integrated Solid Waste Machine class 10 social science CBSE
Name five important trees found in the tropical evergreen class 10 social studies CBSE