Answer
Verified
435.6k+ views
Hint: Here, we need to find the sum of the given numbers. We will rearrange the numbers in the sun, and rewrite the expression. Then, we will convert the subtraction to addition using parentheses, and simplify to get the sum of the given numbers.
Complete step-by-step answer:
First, we will rewrite the negative integers in the given numbers.
The number \[ - x\] can be written as the product of the negative integer \[ - 1\], and the positive integer \[x\].
Therefore, rewriting the numbers \[ - 59\], \[ - 41\], \[ - 92\], \[ - \left( { - 41} \right)\], \[ - 3\], we get
\[ - 59 = \left( { - 1 \times 59} \right)\]
\[ - 41 = \left( { - 1 \times 41} \right)\]
\[ - 92 = \left( { - 1 \times 92} \right)\]
\[ - 3 = \left( { - 1 \times 3} \right)\]
\[ - \left( { - 41} \right) = \left[ { - 1 \times \left( { - 41} \right)} \right] = - 1 \times - 1 \times 41\]
We know that \[{\left( { - 1} \right)^n}\] is equal to 1 if \[n\] is an even number, and is equal to \[ - 1\] if \[n\] is an odd number.
Therefore, we get
\[ \Rightarrow - \left( { - 41} \right) = {\left( { - 1} \right)^2} \times 41 = 1 \times 41 = 41\]
Now, we will find the sum of the given numbers.
Writing the sum of the numbers as an expression, we get
\[\left( { - 59} \right) + \left( { - 41} \right) + 73 + \left( { - 92} \right) + 81 + \left[ { - \left( { - 41} \right)} \right] + \left( { - 3} \right)\]
Substituting \[ - \left( { - 41} \right) = 41\] in the expression, we get
\[ \Rightarrow \left( { - 59} \right) + \left( { - 41} \right) + 73 + \left( { - 92} \right) + 81 + \left[ { - \left( { - 41} \right)} \right] + \left( { - 3} \right) = \left( { - 59} \right) + \left( { - 41} \right) + 73 + \left( { - 92} \right) + 81 + 41 + \left( { - 3} \right)\]
Rearranging the terms of the expression, we get
\[ \Rightarrow \left( { - 59} \right) + \left( { - 41} \right) + 73 + \left( { - 92} \right) + 81 + \left[ { - \left( { - 41} \right)} \right] + \left( { - 3} \right) = 73 + 81 + 41 + \left( { - 59} \right) + \left( { - 41} \right) + \left( { - 92} \right) + \left( { - 3} \right)\]
\[ \Rightarrow \left( { - 59} \right) + \left( { - 41} \right) + 73 + \left( { - 92} \right) + 81 + \left[ { - \left( { - 41} \right)} \right] + \left( { - 3} \right) = 195 + \left( { - 59} \right) + \left( { - 41} \right) + \left( { - 92} \right) + \left( { - 3} \right)\]
Substituting \[ - 59 = \left( { - 1 \times 59} \right)\], \[ - 41 = \left( { - 1 \times 41} \right)\], \[ - 92 = \left( { - 1 \times 92} \right)\], and \[ - 3 = \left( { - 1 \times 3} \right)\] in the expression, we get
\[ \Rightarrow \left( { - 59} \right) + \left( { - 41} \right) + 73 + \left( { - 92} \right) + 81 + \left[ { - \left( { - 41} \right)} \right] + \left( { - 3} \right) = 195 + \left( { - 1 \times 59} \right) + \left( { - 1 \times 41} \right) + \left( { - 1 \times 92} \right) + \left( { - 1 \times 3} \right)\]
Converting subtraction to addition by factoring out \[ - 1\], we get
\[\begin{array}{l} \Rightarrow \left( { - 59} \right) + \left( { - 41} \right) + 73 + \left( { - 92} \right) + 81 + \left[ { - \left( { - 41} \right)} \right] + \left( { - 3} \right) = 195 + \left( { - 1} \right)\left( {59 + 41 + 92 + 3} \right)\\ \Rightarrow \left( { - 59} \right) + \left( { - 41} \right) + 73 + \left( { - 92} \right) + 81 + \left[ { - \left( { - 41} \right)} \right] + \left( { - 3} \right) = 195 - \left( {59 + 41 + 92 + 3} \right)\end{array}\]
Adding the terms of the expression, we get
\[ \Rightarrow \left( { - 59} \right) + \left( { - 41} \right) + 73 + \left( { - 92} \right) + 81 + \left[ { - \left( { - 41} \right)} \right] + \left( { - 3} \right) = 195 - 195\]
Subtracting 195 from 195, we get
\[\therefore \left( -59 \right)+\left( -41 \right)+73+\left( -92 \right)+81+\left[ -\left( -41 \right) \right]+\left( -3 \right)=0\]
Therefore, we get the sum of the numbers \[ - 59\], \[ - 41\], 73, \[ - 92\], 81, \[ - \left( { - 41} \right)\], and \[ - 3\] as 0.
Note: We used the term ‘negative integer’ in the solution. An integer is a rational number that is not a fraction. For example: 1, \[ - 1\], 3, \[ - 7\], are integers. Integers can be positive or negative. Negative integers are the numbers \[ - 1\], \[ - 5\], \[ - 92\], \[ - 41\], etc.
We can also solve this question by making different pairs of numbers. We can make the pairs such that it is easy to add and subtract the terms, and thus, simplify the sum. The answer will be the same.
Complete step-by-step answer:
First, we will rewrite the negative integers in the given numbers.
The number \[ - x\] can be written as the product of the negative integer \[ - 1\], and the positive integer \[x\].
Therefore, rewriting the numbers \[ - 59\], \[ - 41\], \[ - 92\], \[ - \left( { - 41} \right)\], \[ - 3\], we get
\[ - 59 = \left( { - 1 \times 59} \right)\]
\[ - 41 = \left( { - 1 \times 41} \right)\]
\[ - 92 = \left( { - 1 \times 92} \right)\]
\[ - 3 = \left( { - 1 \times 3} \right)\]
\[ - \left( { - 41} \right) = \left[ { - 1 \times \left( { - 41} \right)} \right] = - 1 \times - 1 \times 41\]
We know that \[{\left( { - 1} \right)^n}\] is equal to 1 if \[n\] is an even number, and is equal to \[ - 1\] if \[n\] is an odd number.
Therefore, we get
\[ \Rightarrow - \left( { - 41} \right) = {\left( { - 1} \right)^2} \times 41 = 1 \times 41 = 41\]
Now, we will find the sum of the given numbers.
Writing the sum of the numbers as an expression, we get
\[\left( { - 59} \right) + \left( { - 41} \right) + 73 + \left( { - 92} \right) + 81 + \left[ { - \left( { - 41} \right)} \right] + \left( { - 3} \right)\]
Substituting \[ - \left( { - 41} \right) = 41\] in the expression, we get
\[ \Rightarrow \left( { - 59} \right) + \left( { - 41} \right) + 73 + \left( { - 92} \right) + 81 + \left[ { - \left( { - 41} \right)} \right] + \left( { - 3} \right) = \left( { - 59} \right) + \left( { - 41} \right) + 73 + \left( { - 92} \right) + 81 + 41 + \left( { - 3} \right)\]
Rearranging the terms of the expression, we get
\[ \Rightarrow \left( { - 59} \right) + \left( { - 41} \right) + 73 + \left( { - 92} \right) + 81 + \left[ { - \left( { - 41} \right)} \right] + \left( { - 3} \right) = 73 + 81 + 41 + \left( { - 59} \right) + \left( { - 41} \right) + \left( { - 92} \right) + \left( { - 3} \right)\]
\[ \Rightarrow \left( { - 59} \right) + \left( { - 41} \right) + 73 + \left( { - 92} \right) + 81 + \left[ { - \left( { - 41} \right)} \right] + \left( { - 3} \right) = 195 + \left( { - 59} \right) + \left( { - 41} \right) + \left( { - 92} \right) + \left( { - 3} \right)\]
Substituting \[ - 59 = \left( { - 1 \times 59} \right)\], \[ - 41 = \left( { - 1 \times 41} \right)\], \[ - 92 = \left( { - 1 \times 92} \right)\], and \[ - 3 = \left( { - 1 \times 3} \right)\] in the expression, we get
\[ \Rightarrow \left( { - 59} \right) + \left( { - 41} \right) + 73 + \left( { - 92} \right) + 81 + \left[ { - \left( { - 41} \right)} \right] + \left( { - 3} \right) = 195 + \left( { - 1 \times 59} \right) + \left( { - 1 \times 41} \right) + \left( { - 1 \times 92} \right) + \left( { - 1 \times 3} \right)\]
Converting subtraction to addition by factoring out \[ - 1\], we get
\[\begin{array}{l} \Rightarrow \left( { - 59} \right) + \left( { - 41} \right) + 73 + \left( { - 92} \right) + 81 + \left[ { - \left( { - 41} \right)} \right] + \left( { - 3} \right) = 195 + \left( { - 1} \right)\left( {59 + 41 + 92 + 3} \right)\\ \Rightarrow \left( { - 59} \right) + \left( { - 41} \right) + 73 + \left( { - 92} \right) + 81 + \left[ { - \left( { - 41} \right)} \right] + \left( { - 3} \right) = 195 - \left( {59 + 41 + 92 + 3} \right)\end{array}\]
Adding the terms of the expression, we get
\[ \Rightarrow \left( { - 59} \right) + \left( { - 41} \right) + 73 + \left( { - 92} \right) + 81 + \left[ { - \left( { - 41} \right)} \right] + \left( { - 3} \right) = 195 - 195\]
Subtracting 195 from 195, we get
\[\therefore \left( -59 \right)+\left( -41 \right)+73+\left( -92 \right)+81+\left[ -\left( -41 \right) \right]+\left( -3 \right)=0\]
Therefore, we get the sum of the numbers \[ - 59\], \[ - 41\], 73, \[ - 92\], 81, \[ - \left( { - 41} \right)\], and \[ - 3\] as 0.
Note: We used the term ‘negative integer’ in the solution. An integer is a rational number that is not a fraction. For example: 1, \[ - 1\], 3, \[ - 7\], are integers. Integers can be positive or negative. Negative integers are the numbers \[ - 1\], \[ - 5\], \[ - 92\], \[ - 41\], etc.
We can also solve this question by making different pairs of numbers. We can make the pairs such that it is easy to add and subtract the terms, and thus, simplify the sum. The answer will be the same.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Who gave the slogan Jai Hind ALal Bahadur Shastri BJawaharlal class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE
Students Also Read