Answer
Verified
469.8k+ views
Hint: Let there be any cubic equation as \[a{{x}^{3}}+b{{x}^{2}}+cx+d=0\] which has three roots as \[\alpha ,\beta ,\gamma \]
So we can write this cubic equation as \[a(x-\alpha )(x-\beta )(x-\gamma )=0\], Now we can also say that \[(x-\alpha ),(x-\beta )and(x-\gamma )\] are the factors of cubic equation \[a{{x}^{3}}+b{{x}^{2}}+cx+d=0\] . We will obtain an equation in terms of a and b substituting factor which is x+1=0 or x=-1 in the given equation. We have already been given another equation in a and b, so now using elimination method, we can compute values of a and b.
Complete step-by-step answer:
In the question we are given a cubic equation as \[2{{x}^{3}}+a{{x}^{2}}+2bx+1=0\] which has a factor \[x+1\]
Assuming the roots are \[\alpha ,\beta ,\gamma \] so we can write our cubic equation as
\[2(x-\alpha )(x-\beta )(x-\gamma )=0\]
And factors of this equation will be \[(x-\alpha ),(x-\beta )and(x-\gamma )\]
But one factor given as \[x+1\]
So, replacing \[(x-\alpha )\] with \[x+1\]
Now our equation can be written as \[2(x+1)(x-\beta )(x-\gamma )=0\]
Looking this carefully if we make \[(x+1)=0\] then this cubic equation will become 0
It means \[(x+1)=0\] gives \[x=-1\] is a solution of this cubic equation
putting \[x=-1\] in equation \[2{{x}^{3}}+a{{x}^{2}}+2bx+1\] will make this equation 0
\[2{{(-1)}^{3}}+a{{(-1)}^{2}}+2b(-1)+1=0\]
\[\to (-2+a-2b+1)=0\]
On solving gives
\[a-2b=1.......(1)\]
Now \[a\]and \[b\]are unknown
But in the question, we are given an equation \[2a-3b=4.......(2)\]
So, we have 2 equation and 2 variables \[a\] and \[b\]
We can calculate them but elimination method
So first we eliminate \[a\]
Multiplying the equation (1) with 2
Now equation (1) will look like
\[2a-4b=2.........(3)\]
On subtracting equation (3) from equation (2), we get
\[2a-3b-(2a-4b)=4-2\]
\[2a-3b-2a+4b=2\]
\[b=2\]
Now we get \[b=2\] so we can put this value in equation (1) to get the value of \[a\]
Equation (1) \[a-2b=1\]
\[a-2(2)=1\]
\[a=5\]
Hence, we get the value \[a=5\] and \[b=2\]
Note: In this question students can make mistakes, by taking its root as 1 and not -1. This question is very basic; you just need to solve equations carefully. You can also calculate the values of \[a\] and \[b\] by substitution method.
Like we are given these two equations so we find value of \[a\] from equation (1) and put it in equation (2)
\[a-2b=1.......(1)\] \[2a-3b=4.......(2)\]
\[a=1+2b\] from equation (1)
Putting value of \[a\] into equation (2)
We get
\[2(1+2b)-3b=4\]
\[\to 2+4b-3b=4\]
\[\to 2+4b-3b=4\]
\[\to b=2\]
And we have \[a=1+2b\] so putting value \[b=2\]
\[\to a=5\]
So we can write this cubic equation as \[a(x-\alpha )(x-\beta )(x-\gamma )=0\], Now we can also say that \[(x-\alpha ),(x-\beta )and(x-\gamma )\] are the factors of cubic equation \[a{{x}^{3}}+b{{x}^{2}}+cx+d=0\] . We will obtain an equation in terms of a and b substituting factor which is x+1=0 or x=-1 in the given equation. We have already been given another equation in a and b, so now using elimination method, we can compute values of a and b.
Complete step-by-step answer:
In the question we are given a cubic equation as \[2{{x}^{3}}+a{{x}^{2}}+2bx+1=0\] which has a factor \[x+1\]
Assuming the roots are \[\alpha ,\beta ,\gamma \] so we can write our cubic equation as
\[2(x-\alpha )(x-\beta )(x-\gamma )=0\]
And factors of this equation will be \[(x-\alpha ),(x-\beta )and(x-\gamma )\]
But one factor given as \[x+1\]
So, replacing \[(x-\alpha )\] with \[x+1\]
Now our equation can be written as \[2(x+1)(x-\beta )(x-\gamma )=0\]
Looking this carefully if we make \[(x+1)=0\] then this cubic equation will become 0
It means \[(x+1)=0\] gives \[x=-1\] is a solution of this cubic equation
putting \[x=-1\] in equation \[2{{x}^{3}}+a{{x}^{2}}+2bx+1\] will make this equation 0
\[2{{(-1)}^{3}}+a{{(-1)}^{2}}+2b(-1)+1=0\]
\[\to (-2+a-2b+1)=0\]
On solving gives
\[a-2b=1.......(1)\]
Now \[a\]and \[b\]are unknown
But in the question, we are given an equation \[2a-3b=4.......(2)\]
So, we have 2 equation and 2 variables \[a\] and \[b\]
We can calculate them but elimination method
So first we eliminate \[a\]
Multiplying the equation (1) with 2
Now equation (1) will look like
\[2a-4b=2.........(3)\]
On subtracting equation (3) from equation (2), we get
\[2a-3b-(2a-4b)=4-2\]
\[2a-3b-2a+4b=2\]
\[b=2\]
Now we get \[b=2\] so we can put this value in equation (1) to get the value of \[a\]
Equation (1) \[a-2b=1\]
\[a-2(2)=1\]
\[a=5\]
Hence, we get the value \[a=5\] and \[b=2\]
Note: In this question students can make mistakes, by taking its root as 1 and not -1. This question is very basic; you just need to solve equations carefully. You can also calculate the values of \[a\] and \[b\] by substitution method.
Like we are given these two equations so we find value of \[a\] from equation (1) and put it in equation (2)
\[a-2b=1.......(1)\] \[2a-3b=4.......(2)\]
\[a=1+2b\] from equation (1)
Putting value of \[a\] into equation (2)
We get
\[2(1+2b)-3b=4\]
\[\to 2+4b-3b=4\]
\[\to 2+4b-3b=4\]
\[\to b=2\]
And we have \[a=1+2b\] so putting value \[b=2\]
\[\to a=5\]
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers