In the given figure, if \[\vartriangle ABE \cong \vartriangle ACD\], show that \[\vartriangle ADE \sim \vartriangle ABC\].
Answer
Verified
463.2k+ views
Hint: Use CPCT on the given congruent triangles and write equal sides of two triangles. We prove two triangles similar by the SAS theorem of similarity. Use the proportional sides and common angle to show triangles similar.
CPCT theorem: CPCT stands for corresponding parts of congruent triangles. Theorem states that when two triangles are congruent, we can write the corresponding parts of two triangles equal.
SAS theorem of similarity states that if two sides in one triangle are proportional to two sides in another triangle and the included angle in both are equal, then the two triangles are similar.
Complete step-by-step solution:
We are given that \[\vartriangle ABE \cong \vartriangle ACD\]
When two triangles are given congruent to each other, then by CPCT the corresponding sides and corresponding angles of both triangles are congruent to each other.
\[ \Rightarrow AB = AC,BE = CD,AE = AD\] are corresponding equal sides of two triangles.
\[ \Rightarrow \angle ABE = \angle ACD,\angle BAE = \angle CAD,\angle AEB = \angle ADC\] are corresponding equal angles of two triangles.
Since we have \[AB = AC,AE = AD\]
Then we can write the fraction \[\dfrac{{AD}}{{AB}} = \dfrac{{AE}}{{AC}}\]...............… (1)
We will prove the two triangles \[\vartriangle ADE,\vartriangle ABC\] similar to each other.
In\[\vartriangle ADE,\vartriangle ABC\];
\[\dfrac{{AD}}{{AB}} = \dfrac{{AE}}{{AC}}\] {From (1)}
\[\angle BAE = \angle CAD\] {Common angle}
We have two sides in one triangle that are proportional to two sides in another triangle and included angles equal in both the triangles.
Then by SAS similarity theorem, we can say that\[\vartriangle ADE \sim \vartriangle ABC\]
\[\therefore \vartriangle ADE \sim \vartriangle ABC\]
Note: Students many times confuse SAS similarity theorem with SAS congruence. They try to prove sides of triangles congruent and equal, but keep in mind here we have to prove triangles similar and the rules are different for proving congruence and different for proving similarity. Also, focus on the pair of equal angles in both triangles as they should be between the proportional sides, i.e. the angle should be included and not any of the angles.
CPCT theorem: CPCT stands for corresponding parts of congruent triangles. Theorem states that when two triangles are congruent, we can write the corresponding parts of two triangles equal.
SAS theorem of similarity states that if two sides in one triangle are proportional to two sides in another triangle and the included angle in both are equal, then the two triangles are similar.
Complete step-by-step solution:
We are given that \[\vartriangle ABE \cong \vartriangle ACD\]
When two triangles are given congruent to each other, then by CPCT the corresponding sides and corresponding angles of both triangles are congruent to each other.
\[ \Rightarrow AB = AC,BE = CD,AE = AD\] are corresponding equal sides of two triangles.
\[ \Rightarrow \angle ABE = \angle ACD,\angle BAE = \angle CAD,\angle AEB = \angle ADC\] are corresponding equal angles of two triangles.
Since we have \[AB = AC,AE = AD\]
Then we can write the fraction \[\dfrac{{AD}}{{AB}} = \dfrac{{AE}}{{AC}}\]...............… (1)
We will prove the two triangles \[\vartriangle ADE,\vartriangle ABC\] similar to each other.
In\[\vartriangle ADE,\vartriangle ABC\];
\[\dfrac{{AD}}{{AB}} = \dfrac{{AE}}{{AC}}\] {From (1)}
\[\angle BAE = \angle CAD\] {Common angle}
We have two sides in one triangle that are proportional to two sides in another triangle and included angles equal in both the triangles.
Then by SAS similarity theorem, we can say that\[\vartriangle ADE \sim \vartriangle ABC\]
\[\therefore \vartriangle ADE \sim \vartriangle ABC\]
Note: Students many times confuse SAS similarity theorem with SAS congruence. They try to prove sides of triangles congruent and equal, but keep in mind here we have to prove triangles similar and the rules are different for proving congruence and different for proving similarity. Also, focus on the pair of equal angles in both triangles as they should be between the proportional sides, i.e. the angle should be included and not any of the angles.
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success
Master Class 9 English: Engaging Questions & Answers for Success
Master Class 9 Science: Engaging Questions & Answers for Success
Master Class 9 Social Science: Engaging Questions & Answers for Success
Master Class 9 Maths: Engaging Questions & Answers for Success
Class 9 Question and Answer - Your Ultimate Solutions Guide
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Difference Between Plant Cell and Animal Cell
What is pollution? How many types of pollution? Define it
What is the color of ferrous sulphate crystals? How does this color change after heating? Name the products formed on strongly heating ferrous sulphate crystals. What type of chemical reaction occurs in this type of change.