Answer
Verified
468k+ views
Hint: In this question we will place the Biot-Savart law. Through which we can conclude that the magnetic field along the line of a straight current carrying conductor is zero. Then we need to know the magnetic fields due to sections AB, CD, EF & FG are zero at point O. Then by placing the formula of Magnetic field at the center of a current carrying loop we can find our basic answer.
Complete step-by-step answer:
The magnetic field in the lines of a straight current conveying conductor may be concluded with Biot-Savart 's rule to be zero.
Hence, magnetic fields due to sections AB, CD, EF & FG are zero at point O.
Magnetic field at the center of a current carrying loop is represented by:
$ \Rightarrow B = \dfrac{{{\mu _0}I}}{{2R}}$
Now, the magnetic field due to the section BC would be
$ \Rightarrow {B_{BC}} = \dfrac{1}{4} \times \dfrac{{{\mu _0}I}}{{2R}}$ Inside the plane of paper (by using right hand thumb rule)
We can see that the factor $\dfrac{1}{4}$ appears as only one fourth of the total circumference contributes to the magnetic field.
Now similarly, magnetic field due to section DE would be
$ \Rightarrow {B_{DE}} = \dfrac{{{\mu _0}I}}{{8R}}$Which is inside the plane of paper (by using right hand thumb rule)
Now the total magnetic field at point O is
$ \Rightarrow B = {B_{AB}} + {B_{BC}} + {B_{CD}} + {B_{DE}} + {B_{EF}} + {B_{FG}}$
$ \Rightarrow B = \dfrac{{{\mu _0}I}}{{8{R_1}}} + \dfrac{{{\mu _0}I}}{{8{R_2}}}$ Inside the plane of paper
$ \Rightarrow B = \dfrac{{{\mu _0}I}}{8}\left( {\dfrac{{{R_1} + {R_2}}}{{{R_1}{R_2}}}} \right)$
Hence, the magnetic induction at the point 'O' is calculated to be-
$ \Rightarrow B = \dfrac{{{\mu _0}I}}{8}\left( {\dfrac{{{R_1} + {R_2}}}{{{R_1}{R_2}}}} \right)$
Thus, option B will be the correct option.
Note- The development of an electromotive (i.e. voltage) force by an electrical conductor in a shifting magnetic field is electromagnetic or magnetic induction. The theory of induction by Michael Faraday in 1831 was widely attributed and James Clerk Maxwell mathematically represented it as the rule of induction by Faraday.
Complete step-by-step answer:
The magnetic field in the lines of a straight current conveying conductor may be concluded with Biot-Savart 's rule to be zero.
Hence, magnetic fields due to sections AB, CD, EF & FG are zero at point O.
Magnetic field at the center of a current carrying loop is represented by:
$ \Rightarrow B = \dfrac{{{\mu _0}I}}{{2R}}$
Now, the magnetic field due to the section BC would be
$ \Rightarrow {B_{BC}} = \dfrac{1}{4} \times \dfrac{{{\mu _0}I}}{{2R}}$ Inside the plane of paper (by using right hand thumb rule)
We can see that the factor $\dfrac{1}{4}$ appears as only one fourth of the total circumference contributes to the magnetic field.
Now similarly, magnetic field due to section DE would be
$ \Rightarrow {B_{DE}} = \dfrac{{{\mu _0}I}}{{8R}}$Which is inside the plane of paper (by using right hand thumb rule)
Now the total magnetic field at point O is
$ \Rightarrow B = {B_{AB}} + {B_{BC}} + {B_{CD}} + {B_{DE}} + {B_{EF}} + {B_{FG}}$
$ \Rightarrow B = \dfrac{{{\mu _0}I}}{{8{R_1}}} + \dfrac{{{\mu _0}I}}{{8{R_2}}}$ Inside the plane of paper
$ \Rightarrow B = \dfrac{{{\mu _0}I}}{8}\left( {\dfrac{{{R_1} + {R_2}}}{{{R_1}{R_2}}}} \right)$
Hence, the magnetic induction at the point 'O' is calculated to be-
$ \Rightarrow B = \dfrac{{{\mu _0}I}}{8}\left( {\dfrac{{{R_1} + {R_2}}}{{{R_1}{R_2}}}} \right)$
Thus, option B will be the correct option.
Note- The development of an electromotive (i.e. voltage) force by an electrical conductor in a shifting magnetic field is electromagnetic or magnetic induction. The theory of induction by Michael Faraday in 1831 was widely attributed and James Clerk Maxwell mathematically represented it as the rule of induction by Faraday.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which of the following was the capital of the Surasena class 6 social science CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Who was the first Director General of the Archaeological class 10 social science CBSE