Let ${a_1},{a_2},{a_3},{a_4}$ be real numbers such that $a_1^2 + a_2^2 + a_3^2 + a_4^2 = 1$
Then the smallest possible value of the expression ${\left( {{a_1} - {a_2}} \right)^2} + {\left( {{a_2} - {a_3}} \right)^2} + {\left( {{a_3} - {a_4}} \right)^2} + {\left( {{a_4} - {a_1}} \right)^2}$ lies in interval
A. (0, 1.5)
B. (-1.5, 2.5)
C. (2.5, 3)
D. (3, 3.5)
Answer
Verified
472.8k+ views
Hint: Start by finding the value of determinant A and B separately. Use the properties of adjoint matrix $\det (adjM) = {(\det M)^{n - 1}}$, Substitute the values in the given equation and find the value of k . Use the mathematical function of [k], which is the largest or greatest integer function giving output as only the greatest integer.
Complete step-by-step answer:
Given, $a_1^2 + a_2^2 + a_3^2 + a_4^2 = 1$
When we observe this question carefully then we come to know that the expression ${\left( {{a_1} - {a_2}} \right)^2} + {\left( {{a_2} - {a_3}} \right)^2} + {\left( {{a_3} - {a_4}} \right)^2} + {\left( {{a_4} - {a_1}} \right)^2}$ is always positive . Since all the terms are squared and the square of the negative term will also be positive therefore the minimum value for this equation is 0. And this can only be true, when all have the same values i.e. ${a_1} = {a_2} = {a_3} = {a_4} = a$
On putting the value of ${a_1},{a_2},{a_3},{a_4}$ as a and in the equation $a_1^2 + a_2^2 + a_3^2 + a_4^2 = 1$ we get the value of
$
{a^2} + {a^2} + {a^2} + {a^2} = 1 \\
\Rightarrow 4{a^2} = 1 \\
\Rightarrow {a^2} = \dfrac{1}{4} \\
\Rightarrow a = \dfrac{1}{2} \\
$
Therefore, we get the values of ${a_1},{a_2},{a_3},{a_4}$ as ${a_1} = {a_2} = {a_3} = {a_4} = a = \dfrac{1}{2}$
So, we found the value of ${a_1},{a_2},{a_3},{a_4}$which is 0.5 and we also came to know that the minimum value of the given equation will be 0, which would lie in the range of (-1.5, 2.5)
So, the correct answer is “Option B”.
Note: Similar problems can also be asked by using other properties of determinant which might include trace of matrices, cofactor or minor of a matrix, skew or symmetric matrices etc., and students must be well aware of all such important identities and properties. Attention must be given while evaluating the value of determinant as there are chances of making a mistake while considering the factor of ${( - 1)^{i + j}}$.
Complete step-by-step answer:
Given, $a_1^2 + a_2^2 + a_3^2 + a_4^2 = 1$
When we observe this question carefully then we come to know that the expression ${\left( {{a_1} - {a_2}} \right)^2} + {\left( {{a_2} - {a_3}} \right)^2} + {\left( {{a_3} - {a_4}} \right)^2} + {\left( {{a_4} - {a_1}} \right)^2}$ is always positive . Since all the terms are squared and the square of the negative term will also be positive therefore the minimum value for this equation is 0. And this can only be true, when all have the same values i.e. ${a_1} = {a_2} = {a_3} = {a_4} = a$
On putting the value of ${a_1},{a_2},{a_3},{a_4}$ as a and in the equation $a_1^2 + a_2^2 + a_3^2 + a_4^2 = 1$ we get the value of
$
{a^2} + {a^2} + {a^2} + {a^2} = 1 \\
\Rightarrow 4{a^2} = 1 \\
\Rightarrow {a^2} = \dfrac{1}{4} \\
\Rightarrow a = \dfrac{1}{2} \\
$
Therefore, we get the values of ${a_1},{a_2},{a_3},{a_4}$ as ${a_1} = {a_2} = {a_3} = {a_4} = a = \dfrac{1}{2}$
So, we found the value of ${a_1},{a_2},{a_3},{a_4}$which is 0.5 and we also came to know that the minimum value of the given equation will be 0, which would lie in the range of (-1.5, 2.5)
So, the correct answer is “Option B”.
Note: Similar problems can also be asked by using other properties of determinant which might include trace of matrices, cofactor or minor of a matrix, skew or symmetric matrices etc., and students must be well aware of all such important identities and properties. Attention must be given while evaluating the value of determinant as there are chances of making a mistake while considering the factor of ${( - 1)^{i + j}}$.
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success
Master Class 9 English: Engaging Questions & Answers for Success
Master Class 9 Science: Engaging Questions & Answers for Success
Master Class 9 Social Science: Engaging Questions & Answers for Success
Master Class 9 Maths: Engaging Questions & Answers for Success
Class 9 Question and Answer - Your Ultimate Solutions Guide
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Difference Between Plant Cell and Animal Cell
What is pollution? How many types of pollution? Define it
What is the color of ferrous sulphate crystals? How does this color change after heating? Name the products formed on strongly heating ferrous sulphate crystals. What type of chemical reaction occurs in this type of change.