Answer
Verified
463.2k+ views
Hint: Notice that there are two right angled triangles in the diagram, $ABP$ and $ACP$. Start the solution by trying to prove that both are congruent to each other. For doing that you can use the HL(Hypotenuse-Leg) hypothesis. Once you have done that, you can easily show that $\angle BAP = \angle PAC$.
Complete step-by-step answer:
We can prove that $AP$ bisects the angle between $l$ and $m$ if we can show that the triangles $ABP$ and $ACP$ are congruent to each other. Notice that both these triangles are right angled triangles. And to prove congruence between two right angled triangles we use the HL(Hypotenuse-Leg) convention which states that that if the length of the hypotenuse and one of the other two legs of two right angled triangles are equal, then they are congruent to each other.
In the figure, it is shown that $AB = AC$. And we can also see that the hypotenuse $AP$ is common to both. That implies that both have the same length hypotenuse. Therefore, these two triangles are congruent by the HL hypothesis.
Now, we know that congruent triangles have equal sides and equal angles. Therefore, $\angle BAP = \angle PAC$ . This proves that $AP$ bisects the angle between $l$ and $m$.
Note: Remember that the HL(Hypotenuse-Leg) hypothesis is applicable only for right angled triangles. To tackle these sorts of problems, always start by proving that the two triangles are congruent. Once that is proven, you can easily show that the angle is bisected by the line because bisection of an angle basically means that we have to prove that the angle on both sides of the line are equal.
Complete step-by-step answer:
We can prove that $AP$ bisects the angle between $l$ and $m$ if we can show that the triangles $ABP$ and $ACP$ are congruent to each other. Notice that both these triangles are right angled triangles. And to prove congruence between two right angled triangles we use the HL(Hypotenuse-Leg) convention which states that that if the length of the hypotenuse and one of the other two legs of two right angled triangles are equal, then they are congruent to each other.
In the figure, it is shown that $AB = AC$. And we can also see that the hypotenuse $AP$ is common to both. That implies that both have the same length hypotenuse. Therefore, these two triangles are congruent by the HL hypothesis.
Now, we know that congruent triangles have equal sides and equal angles. Therefore, $\angle BAP = \angle PAC$ . This proves that $AP$ bisects the angle between $l$ and $m$.
Note: Remember that the HL(Hypotenuse-Leg) hypothesis is applicable only for right angled triangles. To tackle these sorts of problems, always start by proving that the two triangles are congruent. Once that is proven, you can easily show that the angle is bisected by the line because bisection of an angle basically means that we have to prove that the angle on both sides of the line are equal.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
How much time does it take to bleed after eating p class 12 biology CBSE