Answer
Verified
430.2k+ views
Hint: Substitute the given value for $x$ in the left hand side of the integration and replace $dx$ accordingly. Simplify the expression in integration using formula $1 - {\sin ^2}\theta = {\cos ^2}\theta $ and then integrate it. Determine the other trigonometric ratios from $x = a\sin \theta $ to get the integration result in terms of $x$. Simplify the final result and bring it in the form of right hand side.
Complete step by step answer:
According to the question, we have to prove the integration using the given substitution.
The integration to prove is:
$ \Rightarrow \int {\dfrac{{dx}}{{{a^2} - {x^2}}}} = \dfrac{1}{{2a}}\log \left| {\dfrac{{a + x}}{{a - x}}} \right| + c{\text{ }}.....{\text{(1)}}$
Let the left hand side integral is denoted as $I$, then we have:
$ \Rightarrow I = \int {\dfrac{{dx}}{{{a^2} - {x^2}}}} {\text{ }}.....{\text{(2)}}$
Now as it is given that we have to use substitution to prove it. So we have:
$ \Rightarrow x = a\sin \theta $
Differentiating it both sides, we’ll get:
$ \Rightarrow dx = a\cos \theta d\theta $
Putting these values in integration equation (2), we’ll get:
$ \Rightarrow I = \int {\dfrac{{a\cos \theta d\theta }}{{{a^2} - {{\left( {a\sin \theta } \right)}^2}}}} $
Simplifying it further, we’ll het:
\[
\Rightarrow I = \int {\dfrac{{a\cos \theta d\theta }}{{{a^2} - {a^2}{{\sin }^2}\theta }}} \\
\Rightarrow I = \int {\dfrac{{a\cos \theta d\theta }}{{{a^2}\left( {1 - {{\sin }^2}\theta } \right)}}} \\
\]
We know the trigonometric formula $1 - {\sin ^2}\theta = {\cos ^2}\theta $. Using this, we’ll get:
\[
\Rightarrow I = \int {\dfrac{{\cos \theta d\theta }}{{a{{\cos }^2}\theta }}} \\
\Rightarrow I = \dfrac{1}{a}\int {\dfrac{{d\theta }}{{\cos \theta }}} \\
\Rightarrow I = \dfrac{1}{a}\int {\sec \theta d\theta } \\
\]
We know the integration formula \[\int {\sec x = } \log \left| {\sec x + \tan x} \right| + c\]. Using this formula, we’ll get:
\[ \Rightarrow I = \dfrac{1}{a}\log \left| {\sec \theta + \tan \theta } \right| + c{\text{ }}.....{\text{(3)}}\]
We have used $x = a\sin \theta $. From this we have:
$ \Rightarrow \sin \theta = \dfrac{x}{a}$
Using the value of $\sin \theta $, we can determine other trigonometric ratios. So we have:
$ \Rightarrow \sec \theta = \dfrac{a}{{\sqrt {{a^2} - {x^2}} }}$ and $\tan \theta = \dfrac{x}{{\sqrt {{a^2} - {x^2}} }}$. Putting these values in equation (3), we’ll get:
\[ \Rightarrow I = \dfrac{1}{a}\log \left| {\dfrac{a}{{\sqrt {{a^2} - {x^2}} }} + \dfrac{x}{{\sqrt {{a^2} - {x^2}} }}} \right| + c\]
Simplifying this further, we’ll get:
\[ \Rightarrow I = \dfrac{1}{a}\log \left| {\dfrac{{\left( {a + x} \right)}}{{\sqrt {{a^2} - {x^2}} }}} \right| + c\]
Using the algebraic formula $\left( {{x^2} - {a^2}} \right) = \left( {x - a} \right)\left( {x + a} \right)$, we’ll get:
\[
\Rightarrow I = \dfrac{1}{a}\log \left| {\dfrac{{\left( {a + x} \right)}}{{\sqrt {\left( {a + x} \right)\left( {a - x} \right)} }}} \right| + c \\
\Rightarrow I = \dfrac{1}{a}\log \left| {\dfrac{{\left( {a + x} \right)}}{{\sqrt {\left( {a + x} \right)} \sqrt {\left( {a - x} \right)} }}} \right| + c \\
\Rightarrow I = \dfrac{1}{a}\log \left| {\dfrac{{\sqrt {\left( {a + x} \right)} }}{{\sqrt {\left( {a - x} \right)} }}} \right| + c \\
\Rightarrow I = \dfrac{1}{a}\log {\left| {\dfrac{{a + x}}{{a - x}}} \right|^{\dfrac{1}{2}}} + c \\
\]
Applying the logarithmic formula $\log {a^b} = b\log a$, we’ll get:
\[
\Rightarrow I = \dfrac{1}{a} \times \dfrac{1}{2}\log \left| {\dfrac{{a + x}}{{a - x}}} \right| + c \\
\Rightarrow I = \dfrac{1}{{2a}}\log \left| {\dfrac{{a + x}}{{a - x}}} \right| + c \\
\]
Putting the value of $I$ from equation (2), we’ll get:
$ \Rightarrow \int {\dfrac{{dx}}{{{a^2} - {x^2}}}} = \dfrac{1}{{2a}}\log \left| {\dfrac{{a + x}}{{a - x}}} \right| + c$
This is the required proof of the integration.
Note: The integration can also be by partial fraction method as shown:
\[ \Rightarrow \int {\dfrac{{dx}}{{{a^2} - {x^2}}}} = \int {\dfrac{{dx}}{{\left( {a - x} \right)\left( {a + x} \right)}}} \]
Now we can apply partial fraction, the expression in the integration can be written as:
\[ \Rightarrow \dfrac{1}{{\left( {a - x} \right)\left( {a + x} \right)}} = \dfrac{1}{{2a}}\left( {\dfrac{1}{{a + x}} + \dfrac{1}{{a - x}}} \right)\]
Using this partial fraction in the above integration, we’ll get:
\[
\Rightarrow \int {\dfrac{{dx}}{{{a^2} - {x^2}}}} = \int {\dfrac{1}{{2a}}\left( {\dfrac{1}{{a + x}} + \dfrac{1}{{a - x}}} \right)dx} \\
\Rightarrow \int {\dfrac{{dx}}{{{a^2} - {x^2}}}} = \dfrac{1}{{2a}}\left( {\int {\dfrac{{dx}}{{a + x}} + \int {\dfrac{{dx}}{{a - x}}} } } \right) \\
\]
Now we can easily integrate this and we will get the same result.
Complete step by step answer:
According to the question, we have to prove the integration using the given substitution.
The integration to prove is:
$ \Rightarrow \int {\dfrac{{dx}}{{{a^2} - {x^2}}}} = \dfrac{1}{{2a}}\log \left| {\dfrac{{a + x}}{{a - x}}} \right| + c{\text{ }}.....{\text{(1)}}$
Let the left hand side integral is denoted as $I$, then we have:
$ \Rightarrow I = \int {\dfrac{{dx}}{{{a^2} - {x^2}}}} {\text{ }}.....{\text{(2)}}$
Now as it is given that we have to use substitution to prove it. So we have:
$ \Rightarrow x = a\sin \theta $
Differentiating it both sides, we’ll get:
$ \Rightarrow dx = a\cos \theta d\theta $
Putting these values in integration equation (2), we’ll get:
$ \Rightarrow I = \int {\dfrac{{a\cos \theta d\theta }}{{{a^2} - {{\left( {a\sin \theta } \right)}^2}}}} $
Simplifying it further, we’ll het:
\[
\Rightarrow I = \int {\dfrac{{a\cos \theta d\theta }}{{{a^2} - {a^2}{{\sin }^2}\theta }}} \\
\Rightarrow I = \int {\dfrac{{a\cos \theta d\theta }}{{{a^2}\left( {1 - {{\sin }^2}\theta } \right)}}} \\
\]
We know the trigonometric formula $1 - {\sin ^2}\theta = {\cos ^2}\theta $. Using this, we’ll get:
\[
\Rightarrow I = \int {\dfrac{{\cos \theta d\theta }}{{a{{\cos }^2}\theta }}} \\
\Rightarrow I = \dfrac{1}{a}\int {\dfrac{{d\theta }}{{\cos \theta }}} \\
\Rightarrow I = \dfrac{1}{a}\int {\sec \theta d\theta } \\
\]
We know the integration formula \[\int {\sec x = } \log \left| {\sec x + \tan x} \right| + c\]. Using this formula, we’ll get:
\[ \Rightarrow I = \dfrac{1}{a}\log \left| {\sec \theta + \tan \theta } \right| + c{\text{ }}.....{\text{(3)}}\]
We have used $x = a\sin \theta $. From this we have:
$ \Rightarrow \sin \theta = \dfrac{x}{a}$
Using the value of $\sin \theta $, we can determine other trigonometric ratios. So we have:
$ \Rightarrow \sec \theta = \dfrac{a}{{\sqrt {{a^2} - {x^2}} }}$ and $\tan \theta = \dfrac{x}{{\sqrt {{a^2} - {x^2}} }}$. Putting these values in equation (3), we’ll get:
\[ \Rightarrow I = \dfrac{1}{a}\log \left| {\dfrac{a}{{\sqrt {{a^2} - {x^2}} }} + \dfrac{x}{{\sqrt {{a^2} - {x^2}} }}} \right| + c\]
Simplifying this further, we’ll get:
\[ \Rightarrow I = \dfrac{1}{a}\log \left| {\dfrac{{\left( {a + x} \right)}}{{\sqrt {{a^2} - {x^2}} }}} \right| + c\]
Using the algebraic formula $\left( {{x^2} - {a^2}} \right) = \left( {x - a} \right)\left( {x + a} \right)$, we’ll get:
\[
\Rightarrow I = \dfrac{1}{a}\log \left| {\dfrac{{\left( {a + x} \right)}}{{\sqrt {\left( {a + x} \right)\left( {a - x} \right)} }}} \right| + c \\
\Rightarrow I = \dfrac{1}{a}\log \left| {\dfrac{{\left( {a + x} \right)}}{{\sqrt {\left( {a + x} \right)} \sqrt {\left( {a - x} \right)} }}} \right| + c \\
\Rightarrow I = \dfrac{1}{a}\log \left| {\dfrac{{\sqrt {\left( {a + x} \right)} }}{{\sqrt {\left( {a - x} \right)} }}} \right| + c \\
\Rightarrow I = \dfrac{1}{a}\log {\left| {\dfrac{{a + x}}{{a - x}}} \right|^{\dfrac{1}{2}}} + c \\
\]
Applying the logarithmic formula $\log {a^b} = b\log a$, we’ll get:
\[
\Rightarrow I = \dfrac{1}{a} \times \dfrac{1}{2}\log \left| {\dfrac{{a + x}}{{a - x}}} \right| + c \\
\Rightarrow I = \dfrac{1}{{2a}}\log \left| {\dfrac{{a + x}}{{a - x}}} \right| + c \\
\]
Putting the value of $I$ from equation (2), we’ll get:
$ \Rightarrow \int {\dfrac{{dx}}{{{a^2} - {x^2}}}} = \dfrac{1}{{2a}}\log \left| {\dfrac{{a + x}}{{a - x}}} \right| + c$
This is the required proof of the integration.
Note: The integration can also be by partial fraction method as shown:
\[ \Rightarrow \int {\dfrac{{dx}}{{{a^2} - {x^2}}}} = \int {\dfrac{{dx}}{{\left( {a - x} \right)\left( {a + x} \right)}}} \]
Now we can apply partial fraction, the expression in the integration can be written as:
\[ \Rightarrow \dfrac{1}{{\left( {a - x} \right)\left( {a + x} \right)}} = \dfrac{1}{{2a}}\left( {\dfrac{1}{{a + x}} + \dfrac{1}{{a - x}}} \right)\]
Using this partial fraction in the above integration, we’ll get:
\[
\Rightarrow \int {\dfrac{{dx}}{{{a^2} - {x^2}}}} = \int {\dfrac{1}{{2a}}\left( {\dfrac{1}{{a + x}} + \dfrac{1}{{a - x}}} \right)dx} \\
\Rightarrow \int {\dfrac{{dx}}{{{a^2} - {x^2}}}} = \dfrac{1}{{2a}}\left( {\int {\dfrac{{dx}}{{a + x}} + \int {\dfrac{{dx}}{{a - x}}} } } \right) \\
\]
Now we can easily integrate this and we will get the same result.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers