Answer
Verified
461.4k+ views
Hint: Before attempting this question, one should have prior knowledge about the irrational Number. According to the definition, irrational numbers are all the real numbers which are not rational numbers. So we can say that, irrational numbers can’t be expressed as the ratio of two integers
Complete step-by-step answer:
Let suppose $ 5 - \sqrt 3 $ as a rational number
As we know that $ 5 - \sqrt 3 $ is an rational number then $ 5 - \sqrt 3 $ = $ \dfrac{p}{q} $ where p and q are coprime numbers and q is not equal to zero here Coprime numbers can be defined as the number or integers which have only ‘1’ as the highest common factor
So, we have $ 5 - \sqrt 3 $ = $ \dfrac{p}{q} $
Now Rearranging terms in the above equation i.e. $ 5 - \sqrt 3 = \dfrac{p}{q} $ , we get
$ - \sqrt 3 = \dfrac{p}{q} - 5 $
$ - \sqrt 3 = \dfrac{{p - 5q}}{q} $
$ \sqrt 3 = \dfrac{{5q - p}}{q} $
Now, $ \dfrac{{5q - p}}{q} $ is clearly a rational number as both p and q are integers.
So, by the above statement we can say that $ \sqrt 3 $ is a rational number
Thus, our assumption is incorrect
Therefore, the number $ 5 - \sqrt 3 $ is irrational.
Note: In this above question to identify the given number is rational number or irrational number we separated the rational term and irrational terms to conclude whether the whole expression is either rational or irrational. Also, one should remember that an irrational number can’t be expressed as a simple fraction. E.g. $ \pi $ , $ \sqrt 2 $ ,etc.
Complete step-by-step answer:
Let suppose $ 5 - \sqrt 3 $ as a rational number
As we know that $ 5 - \sqrt 3 $ is an rational number then $ 5 - \sqrt 3 $ = $ \dfrac{p}{q} $ where p and q are coprime numbers and q is not equal to zero here Coprime numbers can be defined as the number or integers which have only ‘1’ as the highest common factor
So, we have $ 5 - \sqrt 3 $ = $ \dfrac{p}{q} $
Now Rearranging terms in the above equation i.e. $ 5 - \sqrt 3 = \dfrac{p}{q} $ , we get
$ - \sqrt 3 = \dfrac{p}{q} - 5 $
$ - \sqrt 3 = \dfrac{{p - 5q}}{q} $
$ \sqrt 3 = \dfrac{{5q - p}}{q} $
Now, $ \dfrac{{5q - p}}{q} $ is clearly a rational number as both p and q are integers.
So, by the above statement we can say that $ \sqrt 3 $ is a rational number
Thus, our assumption is incorrect
Therefore, the number $ 5 - \sqrt 3 $ is irrational.
Note: In this above question to identify the given number is rational number or irrational number we separated the rational term and irrational terms to conclude whether the whole expression is either rational or irrational. Also, one should remember that an irrational number can’t be expressed as a simple fraction. E.g. $ \pi $ , $ \sqrt 2 $ ,etc.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which of the following was the capital of the Surasena class 6 social science CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Who was the first Director General of the Archaeological class 10 social science CBSE