Prove that $ 5 - \sqrt 3 $ is an irrational number.
Answer
Verified
483.9k+ views
Hint: Before attempting this question, one should have prior knowledge about the irrational Number. According to the definition, irrational numbers are all the real numbers which are not rational numbers. So we can say that, irrational numbers can’t be expressed as the ratio of two integers
Complete step-by-step answer:
Let suppose $ 5 - \sqrt 3 $ as a rational number
As we know that $ 5 - \sqrt 3 $ is an rational number then $ 5 - \sqrt 3 $ = $ \dfrac{p}{q} $ where p and q are coprime numbers and q is not equal to zero here Coprime numbers can be defined as the number or integers which have only ‘1’ as the highest common factor
So, we have $ 5 - \sqrt 3 $ = $ \dfrac{p}{q} $
Now Rearranging terms in the above equation i.e. $ 5 - \sqrt 3 = \dfrac{p}{q} $ , we get
$ - \sqrt 3 = \dfrac{p}{q} - 5 $
$ - \sqrt 3 = \dfrac{{p - 5q}}{q} $
$ \sqrt 3 = \dfrac{{5q - p}}{q} $
Now, $ \dfrac{{5q - p}}{q} $ is clearly a rational number as both p and q are integers.
So, by the above statement we can say that $ \sqrt 3 $ is a rational number
Thus, our assumption is incorrect
Therefore, the number $ 5 - \sqrt 3 $ is irrational.
Note: In this above question to identify the given number is rational number or irrational number we separated the rational term and irrational terms to conclude whether the whole expression is either rational or irrational. Also, one should remember that an irrational number can’t be expressed as a simple fraction. E.g. $ \pi $ , $ \sqrt 2 $ ,etc.
Complete step-by-step answer:
Let suppose $ 5 - \sqrt 3 $ as a rational number
As we know that $ 5 - \sqrt 3 $ is an rational number then $ 5 - \sqrt 3 $ = $ \dfrac{p}{q} $ where p and q are coprime numbers and q is not equal to zero here Coprime numbers can be defined as the number or integers which have only ‘1’ as the highest common factor
So, we have $ 5 - \sqrt 3 $ = $ \dfrac{p}{q} $
Now Rearranging terms in the above equation i.e. $ 5 - \sqrt 3 = \dfrac{p}{q} $ , we get
$ - \sqrt 3 = \dfrac{p}{q} - 5 $
$ - \sqrt 3 = \dfrac{{p - 5q}}{q} $
$ \sqrt 3 = \dfrac{{5q - p}}{q} $
Now, $ \dfrac{{5q - p}}{q} $ is clearly a rational number as both p and q are integers.
So, by the above statement we can say that $ \sqrt 3 $ is a rational number
Thus, our assumption is incorrect
Therefore, the number $ 5 - \sqrt 3 $ is irrational.
Note: In this above question to identify the given number is rational number or irrational number we separated the rational term and irrational terms to conclude whether the whole expression is either rational or irrational. Also, one should remember that an irrational number can’t be expressed as a simple fraction. E.g. $ \pi $ , $ \sqrt 2 $ ,etc.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Difference Between Plant Cell and Animal Cell
What is pollution? How many types of pollution? Define it
What is the color of ferrous sulphate crystals? How does this color change after heating? Name the products formed on strongly heating ferrous sulphate crystals. What type of chemical reaction occurs in this type of change.
Distinguish between Conventional and nonconventional class 9 social science CBSE