Answer
Verified
469.2k+ views
Hint: Here in this question we must know following properties that are mentioned below: -
* Bisectors divide the angles into two equal parts.
* Sum of the interior angles of a triangle is 180 degrees.
Complete step-by-step answer:
Construction: -
Draw a line segment AB and extend point A up to point D and extend point B up to point E.
Draw bisector of $\angle DAB$ and $\angle EBA$ naming CA and BC such that lines meet at a point C.
$\angle DAB$ and $\angle EBA$ are adjacent supplementary to each other such that $\angle DAB + \angle EBA = {180^ \circ }$
To prove: - We have to prove that the angle made after joining the bisectors is 90 degree i.e. $\angle ACB = {90^ \circ }$ or right angle.
Proof: -We have given $\angle DAB + \angle EBA = {180^ \circ }$, CA and BC are the bisectors of $\angle DAB$ and $\angle EBA$ respectively.
$\therefore \angle DAC + \angle CAB = \dfrac{1}{2}(\angle DAB)$ .....................equation 1.
$ \Rightarrow \angle EBC + \angle CBA = \dfrac{1}{2}(\angle EBA)$ .......................equation 2.
$\angle DAB + \angle EBA = {180^ \circ }$
$ \Rightarrow 2\angle CAB + 2\angle CBA = {180^ \circ }$ (Using equation 1 and 2)
$ \Rightarrow 2(\angle CAB + \angle CBA) = {180^ \circ }$ (Taking 2 common from the equation)
$ \Rightarrow (\angle CAB + \angle CBA) = {90^ \circ }$ .......................equation 3.
Now we will apply the property of triangle which states that the sum of interior angles of a triangle is 180 degrees.
$ \Rightarrow \angle CAB + \angle CBA + \angle ACB = {180^ \circ }$ (Angle sum property)
$ \Rightarrow {90^ \circ } + \angle ACB = {180^ \circ }$ (Using equation 3)
$ \Rightarrow \angle ACB = {180^ \circ } - {90^ \circ }$
$\therefore \angle ACB = {90^ \circ }$
Hence it is proved that the bisectors of the two adjacent supplementary angles include a right angle.
Note: Many students may likely make mistakes while reading and understanding the question because it is little confusing as it is not specified directly what to prove so understanding of concepts such as supplementary angles and angle bisectors must be very well known to a student. Supplementary angles are the angles which when added up gives 180 degree. They don’t have to be next to each other as long as their sum is 180 degrees they will be called as supplementary angles.
* Bisectors divide the angles into two equal parts.
* Sum of the interior angles of a triangle is 180 degrees.
Complete step-by-step answer:
Construction: -
Draw a line segment AB and extend point A up to point D and extend point B up to point E.
Draw bisector of $\angle DAB$ and $\angle EBA$ naming CA and BC such that lines meet at a point C.
$\angle DAB$ and $\angle EBA$ are adjacent supplementary to each other such that $\angle DAB + \angle EBA = {180^ \circ }$
To prove: - We have to prove that the angle made after joining the bisectors is 90 degree i.e. $\angle ACB = {90^ \circ }$ or right angle.
Proof: -We have given $\angle DAB + \angle EBA = {180^ \circ }$, CA and BC are the bisectors of $\angle DAB$ and $\angle EBA$ respectively.
$\therefore \angle DAC + \angle CAB = \dfrac{1}{2}(\angle DAB)$ .....................equation 1.
$ \Rightarrow \angle EBC + \angle CBA = \dfrac{1}{2}(\angle EBA)$ .......................equation 2.
$\angle DAB + \angle EBA = {180^ \circ }$
$ \Rightarrow 2\angle CAB + 2\angle CBA = {180^ \circ }$ (Using equation 1 and 2)
$ \Rightarrow 2(\angle CAB + \angle CBA) = {180^ \circ }$ (Taking 2 common from the equation)
$ \Rightarrow (\angle CAB + \angle CBA) = {90^ \circ }$ .......................equation 3.
Now we will apply the property of triangle which states that the sum of interior angles of a triangle is 180 degrees.
$ \Rightarrow \angle CAB + \angle CBA + \angle ACB = {180^ \circ }$ (Angle sum property)
$ \Rightarrow {90^ \circ } + \angle ACB = {180^ \circ }$ (Using equation 3)
$ \Rightarrow \angle ACB = {180^ \circ } - {90^ \circ }$
$\therefore \angle ACB = {90^ \circ }$
Hence it is proved that the bisectors of the two adjacent supplementary angles include a right angle.
Note: Many students may likely make mistakes while reading and understanding the question because it is little confusing as it is not specified directly what to prove so understanding of concepts such as supplementary angles and angle bisectors must be very well known to a student. Supplementary angles are the angles which when added up gives 180 degree. They don’t have to be next to each other as long as their sum is 180 degrees they will be called as supplementary angles.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE