Answer
Verified
469.2k+ views
Hint: A quadrilateral is a polygon having four sides and four vertices. A quadrilateral is cyclic when all of its vertices lie on a circle.
A cyclic quadrilateral is given by the following figure:
A quadrilateral formed by the internal angle bisectors of a quadrilateral ABCD is PQRS:
We need to prove PQRS is cyclic.
A rule of angle equality is, vertically opposite angles are equal.
Angle sum property of a triangle gives the sum of all angles of a triangle = ${180^0}$
To prove the quadrilateral PQRS is cyclic, it is enough to prove that the sum of opposite angles of PQRS is ${180^0}$ . Implies $\angle SPQ + \angle SRQ = {180^0}$
Complete step-by-step answer:
Step 1: Consider a quadrilateral ABCD with internal bisectors AQ, BS, CS, DQ of angles $\angle A$, $\angle B$ , $\angle C$ and $\angle D$ respectively. We need to prove the quadrilateral PQRS formed by these four internal angle bisectors is cyclic.
As vertically opposite angles are equal, we obtain the following equalities:
$
\angle SPQ = \angle APB \\
\angle SRQ = \angle DRC \\
$
Adding above two formulas we get $\angle SPQ + \angle SRQ = \angle APB + \angle DRC$
As AQ is the angle bisector of $\angle A$ and P is a point on AQ, By angle sum property,
$\angle APB = 180 - (\dfrac{1}{2}\angle A + \dfrac{1}{2}\angle B)$ and $\angle DRC = 180 - (\dfrac{1}{2}\angle D + \dfrac{1}{2}\angle C)$ . Thus,
$
\angle SPQ + \angle SRQ = \angle APB + \angle DRC \\
= 180 - (\dfrac{1}{2}\angle A + \dfrac{1}{2}\angle B) + 180 - (\dfrac{1}{2}\angle D + \dfrac{1}{2}\angle C) \\
= 360 - \dfrac{1}{2}(\angle A + \angle B + \angle C + \angle D) \\
= 360 - \dfrac{1}{2}(360) \\
= {180^0} \\
$
The sum of opposite angles of quadrilateral PQRS is ${180^0}$ . Thus PQRS is a cyclic quadrilateral.
Hence proved.
The quadrilateral formed by internal angle bisectors of a quadrilateral is cyclic.
Note: Students should always draw a diagram for better understanding of such questions. Also, they should avoid writing the angles in one letter when taking in consideration a figure where there are several other angles which might seem like the same.
Kite, Trapezoid, Parallelogram, Square, Rhombus, Rectangle comes under Quadrilateral.
A cyclic quadrilateral is given by the following figure:
A quadrilateral formed by the internal angle bisectors of a quadrilateral ABCD is PQRS:
We need to prove PQRS is cyclic.
A rule of angle equality is, vertically opposite angles are equal.
Angle sum property of a triangle gives the sum of all angles of a triangle = ${180^0}$
To prove the quadrilateral PQRS is cyclic, it is enough to prove that the sum of opposite angles of PQRS is ${180^0}$ . Implies $\angle SPQ + \angle SRQ = {180^0}$
Complete step-by-step answer:
Step 1: Consider a quadrilateral ABCD with internal bisectors AQ, BS, CS, DQ of angles $\angle A$, $\angle B$ , $\angle C$ and $\angle D$ respectively. We need to prove the quadrilateral PQRS formed by these four internal angle bisectors is cyclic.
As vertically opposite angles are equal, we obtain the following equalities:
$
\angle SPQ = \angle APB \\
\angle SRQ = \angle DRC \\
$
Adding above two formulas we get $\angle SPQ + \angle SRQ = \angle APB + \angle DRC$
As AQ is the angle bisector of $\angle A$ and P is a point on AQ, By angle sum property,
$\angle APB = 180 - (\dfrac{1}{2}\angle A + \dfrac{1}{2}\angle B)$ and $\angle DRC = 180 - (\dfrac{1}{2}\angle D + \dfrac{1}{2}\angle C)$ . Thus,
$
\angle SPQ + \angle SRQ = \angle APB + \angle DRC \\
= 180 - (\dfrac{1}{2}\angle A + \dfrac{1}{2}\angle B) + 180 - (\dfrac{1}{2}\angle D + \dfrac{1}{2}\angle C) \\
= 360 - \dfrac{1}{2}(\angle A + \angle B + \angle C + \angle D) \\
= 360 - \dfrac{1}{2}(360) \\
= {180^0} \\
$
The sum of opposite angles of quadrilateral PQRS is ${180^0}$ . Thus PQRS is a cyclic quadrilateral.
Hence proved.
The quadrilateral formed by internal angle bisectors of a quadrilateral is cyclic.
Note: Students should always draw a diagram for better understanding of such questions. Also, they should avoid writing the angles in one letter when taking in consideration a figure where there are several other angles which might seem like the same.
Kite, Trapezoid, Parallelogram, Square, Rhombus, Rectangle comes under Quadrilateral.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE