![SearchIcon](https://vmkt.vedantu.com/vmkt/PROD/png/bdcdbbd8-08a7-4688-98e6-4aa54e5e0800-1733305962725-4102606384256179.png)
Prove work energy theorem for a constant force.
Answer
125.1k+ views
Hint: Work energy theorem gives the relation between work done and energy. According to the work energy theorem, the net work done on a body is equal to the change in the kinetic energy of the body.
Complete step by step solution:
Suppose an object is having a mass ‘m’. Initially the object is moving with a velocity \[{v_1}\] and its final velocity is \[{v_2}\].
Therefore the initial kinetic energy of the object will be \[{K_1} = \dfrac{1}{2}mv_1^2\].
The final kinetic energy of the object will be \[{K_2} = \dfrac{1}{2}mv_2^2\].
Given that a constant force is acting on the object, so using Newton’s second law of motion, it can be written that
F=m.a……(i)
Where ‘F’ is the force, ‘m’ is the mass and ‘a’ is the acceleration
Also work done is defined as the product of force applied and the displacement. Mathematically, work done is written as
W=F.d……(ii)
It is known that the acceleration is the rate of change of velocity of the object. If the velocity of the object is changing and the object covers a displacement ‘d’, then using the equation of motion we can write that
\[v_2^2 - v_1^2 = 2ad\]
\[\Rightarrow a = \dfrac{{v_2^2 - v_1^2}}{{2d}}\]
Substituting the value of acceleration in equation (i) and solving, we get
\[F = m.\dfrac{{v_2^2 - v_1^2}}{{2d}}\]
\[\Rightarrow F.d = \dfrac{1}{2}m(v_2^2 - v_1^2)\]
Using equation (ii), in the above equation we get
\[W = \dfrac{1}{2}m(v_2^2 - v_1^2)\]
\[\Rightarrow W = \Delta K.E.\]
Where ‘W’ is the work done and \[\Delta K.E.\] is the kinetic energy.
Hence Proved
Note: It is important to remember that work energy is used to find out the work done by a number of forces on a solid object if it is moving under the influence of a number of forces. Work energy theorem is scalar as it does not define the direction of velocity in which the object is moving.
Complete step by step solution:
Suppose an object is having a mass ‘m’. Initially the object is moving with a velocity \[{v_1}\] and its final velocity is \[{v_2}\].
Therefore the initial kinetic energy of the object will be \[{K_1} = \dfrac{1}{2}mv_1^2\].
The final kinetic energy of the object will be \[{K_2} = \dfrac{1}{2}mv_2^2\].
Given that a constant force is acting on the object, so using Newton’s second law of motion, it can be written that
F=m.a……(i)
Where ‘F’ is the force, ‘m’ is the mass and ‘a’ is the acceleration
Also work done is defined as the product of force applied and the displacement. Mathematically, work done is written as
W=F.d……(ii)
It is known that the acceleration is the rate of change of velocity of the object. If the velocity of the object is changing and the object covers a displacement ‘d’, then using the equation of motion we can write that
\[v_2^2 - v_1^2 = 2ad\]
\[\Rightarrow a = \dfrac{{v_2^2 - v_1^2}}{{2d}}\]
Substituting the value of acceleration in equation (i) and solving, we get
\[F = m.\dfrac{{v_2^2 - v_1^2}}{{2d}}\]
\[\Rightarrow F.d = \dfrac{1}{2}m(v_2^2 - v_1^2)\]
Using equation (ii), in the above equation we get
\[W = \dfrac{1}{2}m(v_2^2 - v_1^2)\]
\[\Rightarrow W = \Delta K.E.\]
Where ‘W’ is the work done and \[\Delta K.E.\] is the kinetic energy.
Hence Proved
Note: It is important to remember that work energy is used to find out the work done by a number of forces on a solid object if it is moving under the influence of a number of forces. Work energy theorem is scalar as it does not define the direction of velocity in which the object is moving.
Recently Updated Pages
The ratio of the diameters of two metallic rods of class 11 physics JEE_Main
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
What is the difference between Conduction and conv class 11 physics JEE_Main
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Mark the correct statements about the friction between class 11 physics JEE_Main
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Find the acceleration of the wedge towards the right class 11 physics JEE_Main
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
A standing wave is formed by the superposition of two class 11 physics JEE_Main
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Derive an expression for work done by the gas in an class 11 physics JEE_Main
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Class 11 JEE Main Physics Mock Test 2025
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Units and Measurements Class 11 Notes: CBSE Physics Chapter 1
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
NCERT Solutions for Class 11 Physics Chapter 7 Gravitation
![arrow-right](/cdn/images/seo-templates/arrow-right.png)