Answer
Verified
498.9k+ views
Hint-Make use of the formula of the discriminant when the roots are non real(imaginary) and solve it.
Given that the roots of the equation are non real
The equation given is $a{x^2} + 2bx - 3c = 0$
On comparing with the standard form $a{x^2} + bx + c = 0$ ,we can write the value of a=a, b=2b,c=-3c
Now, we know that the value of the discriminant when the roots are non real is less than zero
So, we have ${b^2} - 4ac < 0$
On substituting the values of a, b, c we can write
\[\begin{gathered}
{\left( {2b} \right)^2} - 4a( - 3c) < 0 \\
\Rightarrow 4{b^2} + 12ac < 0 \\
\Rightarrow 4{b^2} < - 12ac, \\
\Rightarrow {b^2} < - 3ac, \\
\Rightarrow - a > {b^2}/(3c),a < - {b^2}/(3c) \\
\end{gathered} \]
Also we have in the equation
$4{b^2} + 12ac < 0$
$4{b^2}$ will always be positive
So, this implies to say that $12ac < 0$
$ \Rightarrow c < 0{\text{ or a < 0}}$
Also given in the question that (3c/4)<(a+b) ----(i)
We already had the value which said $a < - {b^2}/3c$
So, let’s put that value of a in eq(i)
So ,we get 3c/4<$( - {b^2}/3c + b)$---(ii) (We are putting the maximum value of a here)
So, this above equation implies that the value of c<0
So, option A is the correct answer.
Note: In equation (ii) we need not solve the entire equation, by inspection we can easily
make out that the value of c<0 also make sure to use the correct inequality of discriminant in accordance to the nature of the root given.
Given that the roots of the equation are non real
The equation given is $a{x^2} + 2bx - 3c = 0$
On comparing with the standard form $a{x^2} + bx + c = 0$ ,we can write the value of a=a, b=2b,c=-3c
Now, we know that the value of the discriminant when the roots are non real is less than zero
So, we have ${b^2} - 4ac < 0$
On substituting the values of a, b, c we can write
\[\begin{gathered}
{\left( {2b} \right)^2} - 4a( - 3c) < 0 \\
\Rightarrow 4{b^2} + 12ac < 0 \\
\Rightarrow 4{b^2} < - 12ac, \\
\Rightarrow {b^2} < - 3ac, \\
\Rightarrow - a > {b^2}/(3c),a < - {b^2}/(3c) \\
\end{gathered} \]
Also we have in the equation
$4{b^2} + 12ac < 0$
$4{b^2}$ will always be positive
So, this implies to say that $12ac < 0$
$ \Rightarrow c < 0{\text{ or a < 0}}$
Also given in the question that (3c/4)<(a+b) ----(i)
We already had the value which said $a < - {b^2}/3c$
So, let’s put that value of a in eq(i)
So ,we get 3c/4<$( - {b^2}/3c + b)$---(ii) (We are putting the maximum value of a here)
So, this above equation implies that the value of c<0
So, option A is the correct answer.
Note: In equation (ii) we need not solve the entire equation, by inspection we can easily
make out that the value of c<0 also make sure to use the correct inequality of discriminant in accordance to the nature of the root given.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE