Answer
Verified
441.3k+ views
Hint:
Here, we will solve this question of heights and distances by using the similarity of triangles. We will prove that the given two right angled triangles are similar to each other. Hence, their corresponding sides will be proportional. Equating the corresponding sides of similar triangles, and solving it further, will we get the required height of the tree.
Complete step by step solution:
Let \[BC\] be the height of Ravi.
According to the question, height of Ravi \[ = BC = 1.82{\rm{m}}\]
Now, let the height of the tree in Ravi’s backyard be \[DE = h\] meters
Now, it is given that from the tree’s base he walked \[12.20{\rm{m}}\].
Hence, distance covered by him, \[BD = 12.20{\rm{m}}\]
Also, it is gven that he is now \[6.10{\rm{m}}\] from the end of the shadow.
Therefore, from the figure, the distance \[AB = 6.10{\rm{m}}\]
Now, as we can see,
Ravi’s shadow \[ = AB = 6.10{\rm{m}}\]
And, Tree’s shadow \[ = AD = BD + AB\]
Substituting \[AB = 6.10{\rm{m}}\] and \[BD = 12.20{\rm{m}}\] in the above equation, we get
\[ \Rightarrow AD = 12.20 + 6.10\]
Adding the terms, we get
\[ \Rightarrow AD = 18.30{\rm{m}}\]
Now, in $\vartriangle ABC$ and $\vartriangle ADE$,
\[\angle ABC = \angle ADE = 90^\circ \] (As the height of Ravi and the tree will always be perpendicular towards the ground)
\[\angle A = \angle A\] (common angle)
Therefore, by Angle-Angle or AA Similarity
$\vartriangle ABC \simeq \vartriangle ADE$
Hence, if two triangles are similar, then, the corresponding parts of similar triangles are proportional. So,
\[\dfrac{{AB}}{{AD}} = \dfrac{{BC}}{{DE}}\]
Substituting \[DE = h\], \[AB = 6.10{\rm{m}}\], \[BC = 1.82{\rm{m}}\] and \[AD = 18.30{\rm{m}}\] in theabove equation, we get
\[ \Rightarrow \dfrac{{6.10}}{{18.30}} = \dfrac{{1.82}}{h}\]
Now, by cross multiplying, we get,
\[ \Rightarrow 6.10h = 1.82 \times 18.30\]
On converting decimal to fraction, we get
\[ \Rightarrow h = \dfrac{{182 \times 1830 \times 100}}{{100 \times 100 \times 610}}\]
Solving further, we get,
\[ \Rightarrow h = \dfrac{{546}}{{100}} = 5.46{\rm{m}}\]
Therefore, the required height of the tree is \[5.46{\rm{m}}\].
Hence, the tree is \[5.46{\rm{m}}\] tall.
Note:
An alternate way to solve this question is:
We will use trigonometric identities in a right angled triangle.
As we know, in a right angled triangle \[\tan \theta = \dfrac{P}{B}\], where \[P\] is the perpendicular side and \[B\] is the base.
Therefore, in $\vartriangle ABC$
\[\tan \theta = \dfrac{{BC}}{{AB}}\]
Substituting \[AB = 6.10{\rm{m}}\]and \[BC = 1.82{\rm{m}}\] in the above equation, we get
\[\tan \theta = \dfrac{{1.82}}{{6.10}}\]
Simplifying further, we get
\[\tan \theta = \dfrac{{91}}{{305}}\]……………………………. \[\left( 1 \right)\]
But, if we consider the larger right angled triangle, i.e. $\vartriangle ADE$,
Then, \[\tan \theta = \dfrac{{DE}}{{AD}} = \dfrac{h}{{18.30}}\]………………………….. \[\left( 2 \right)\]
Hence, equating \[\left( 1 \right)\] and \[\left( 2 \right)\], we get,
\[\dfrac{h}{{18.30}} = \dfrac{{91}}{{305}}\]
On cross multiplication, we get
\[ \Rightarrow h = \dfrac{{91 \times 1830}}{{305 \times 100}}\]
Simplifying the expression, we get
\[ \Rightarrow h = \dfrac{{546}}{{100}} = 5.46{\rm{m}}\]
Therefore, the required height of the tree is \[5.46{\rm{m}}\]
Hence, the tree is \[5.46{\rm{m}}\] tall.
Here, we will solve this question of heights and distances by using the similarity of triangles. We will prove that the given two right angled triangles are similar to each other. Hence, their corresponding sides will be proportional. Equating the corresponding sides of similar triangles, and solving it further, will we get the required height of the tree.
Complete step by step solution:
Let \[BC\] be the height of Ravi.
According to the question, height of Ravi \[ = BC = 1.82{\rm{m}}\]
Now, let the height of the tree in Ravi’s backyard be \[DE = h\] meters
Now, it is given that from the tree’s base he walked \[12.20{\rm{m}}\].
Hence, distance covered by him, \[BD = 12.20{\rm{m}}\]
Also, it is gven that he is now \[6.10{\rm{m}}\] from the end of the shadow.
Therefore, from the figure, the distance \[AB = 6.10{\rm{m}}\]
Now, as we can see,
Ravi’s shadow \[ = AB = 6.10{\rm{m}}\]
And, Tree’s shadow \[ = AD = BD + AB\]
Substituting \[AB = 6.10{\rm{m}}\] and \[BD = 12.20{\rm{m}}\] in the above equation, we get
\[ \Rightarrow AD = 12.20 + 6.10\]
Adding the terms, we get
\[ \Rightarrow AD = 18.30{\rm{m}}\]
Now, in $\vartriangle ABC$ and $\vartriangle ADE$,
\[\angle ABC = \angle ADE = 90^\circ \] (As the height of Ravi and the tree will always be perpendicular towards the ground)
\[\angle A = \angle A\] (common angle)
Therefore, by Angle-Angle or AA Similarity
$\vartriangle ABC \simeq \vartriangle ADE$
Hence, if two triangles are similar, then, the corresponding parts of similar triangles are proportional. So,
\[\dfrac{{AB}}{{AD}} = \dfrac{{BC}}{{DE}}\]
Substituting \[DE = h\], \[AB = 6.10{\rm{m}}\], \[BC = 1.82{\rm{m}}\] and \[AD = 18.30{\rm{m}}\] in theabove equation, we get
\[ \Rightarrow \dfrac{{6.10}}{{18.30}} = \dfrac{{1.82}}{h}\]
Now, by cross multiplying, we get,
\[ \Rightarrow 6.10h = 1.82 \times 18.30\]
On converting decimal to fraction, we get
\[ \Rightarrow h = \dfrac{{182 \times 1830 \times 100}}{{100 \times 100 \times 610}}\]
Solving further, we get,
\[ \Rightarrow h = \dfrac{{546}}{{100}} = 5.46{\rm{m}}\]
Therefore, the required height of the tree is \[5.46{\rm{m}}\].
Hence, the tree is \[5.46{\rm{m}}\] tall.
Note:
An alternate way to solve this question is:
We will use trigonometric identities in a right angled triangle.
As we know, in a right angled triangle \[\tan \theta = \dfrac{P}{B}\], where \[P\] is the perpendicular side and \[B\] is the base.
Therefore, in $\vartriangle ABC$
\[\tan \theta = \dfrac{{BC}}{{AB}}\]
Substituting \[AB = 6.10{\rm{m}}\]and \[BC = 1.82{\rm{m}}\] in the above equation, we get
\[\tan \theta = \dfrac{{1.82}}{{6.10}}\]
Simplifying further, we get
\[\tan \theta = \dfrac{{91}}{{305}}\]……………………………. \[\left( 1 \right)\]
But, if we consider the larger right angled triangle, i.e. $\vartriangle ADE$,
Then, \[\tan \theta = \dfrac{{DE}}{{AD}} = \dfrac{h}{{18.30}}\]………………………….. \[\left( 2 \right)\]
Hence, equating \[\left( 1 \right)\] and \[\left( 2 \right)\], we get,
\[\dfrac{h}{{18.30}} = \dfrac{{91}}{{305}}\]
On cross multiplication, we get
\[ \Rightarrow h = \dfrac{{91 \times 1830}}{{305 \times 100}}\]
Simplifying the expression, we get
\[ \Rightarrow h = \dfrac{{546}}{{100}} = 5.46{\rm{m}}\]
Therefore, the required height of the tree is \[5.46{\rm{m}}\]
Hence, the tree is \[5.46{\rm{m}}\] tall.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE