Answer
Verified
450.6k+ views
Hint: We denote the points representing 0 and 2 in the number line as $O$ and $A$. We construct a right angled triangle OAB such that $\angle OAB$ is the right angle and $AB=1$ unit. We use the Pythagoras theorem and find $OB=\sqrt{5}$ units. We take an arc OB from the point of O and cut the number line at the point G. G represents $\sqrt{5}$ in the number line.
Complete step-by-step answer:
We know from Pythagora's theorem states that “In a right-angled triangle the square of hypotenuse is sum of squares of other two sides.” If $h$ is the length of hypotenuse and $p,b$ are the lengths of other two sides, then we have
\[{{h}^{2}}={{p}^{2}}+{{b}^{2}}\]
If we can find a length of $\sqrt{5}$ and take an arc of that length from point 0 in the number line we can show the position of $\sqrt{5}$. Let us choose the hypotenuse as $h=\sqrt{5}$. So we have${{h}^{2}}={{\left( \sqrt{5} \right)}^{2}}=5$. We can choose two perfect squares ${{p}^{2}}=4,{{b}^{2}}=1$ such that${{p}^{2}}+{{b}^{2}}={{h}^{2}}=5$. Then we have $p=2,b=1$.
We denote the point representing 0 and 2 in the number line as $O$ and $A$. The line segment $OA$ will be our choice for $p=2$.We draw the right angle at the point of A and construct the right angle triangle $\Delta OAB$ such that $AB=1$unit. The line segment $OB$ will be our choice for $p=1$. \[\]
We see that in the above right angled triangle OAB is the hypotenuse $h=OB$. So by Pythagoras theorem we have,
\[\begin{align}
& O{{B}^{2}}=O{{A}^{2}}+A{{B}^{2}} \\
& \Rightarrow {{h}^{2}}={{p}^{2}}+{{b}^{2}} \\
& \Rightarrow h=\sqrt{{{p}^{2}}+{{b}^{2}}} \\
& \Rightarrow h=\sqrt{{{2}^{2}}+{{1}^{2}}}=\sqrt{5} \\
\end{align}\]
We take the arc $OB=\sqrt{5}$ from O and cut the number line at the point G. G will represent the number $\sqrt{5}$ in the number line.\[\]
Note: We note that $\sqrt{5}$ is an irrational number which means $\sqrt{5}$ cannot be expressed in the form of $\dfrac{p}{q}$where $p$ is any integer and $q$ is a non-zero integer. We can alternative solve by choosing ${{p}^{2}}=2,{{b}^{2}}=3$ but or that we need to construct right angled triangles with hypotenuse of length $\sqrt{2},\sqrt{3}$units.
Complete step-by-step answer:
We know from Pythagora's theorem states that “In a right-angled triangle the square of hypotenuse is sum of squares of other two sides.” If $h$ is the length of hypotenuse and $p,b$ are the lengths of other two sides, then we have
\[{{h}^{2}}={{p}^{2}}+{{b}^{2}}\]
If we can find a length of $\sqrt{5}$ and take an arc of that length from point 0 in the number line we can show the position of $\sqrt{5}$. Let us choose the hypotenuse as $h=\sqrt{5}$. So we have${{h}^{2}}={{\left( \sqrt{5} \right)}^{2}}=5$. We can choose two perfect squares ${{p}^{2}}=4,{{b}^{2}}=1$ such that${{p}^{2}}+{{b}^{2}}={{h}^{2}}=5$. Then we have $p=2,b=1$.
We denote the point representing 0 and 2 in the number line as $O$ and $A$. The line segment $OA$ will be our choice for $p=2$.We draw the right angle at the point of A and construct the right angle triangle $\Delta OAB$ such that $AB=1$unit. The line segment $OB$ will be our choice for $p=1$. \[\]
We see that in the above right angled triangle OAB is the hypotenuse $h=OB$. So by Pythagoras theorem we have,
\[\begin{align}
& O{{B}^{2}}=O{{A}^{2}}+A{{B}^{2}} \\
& \Rightarrow {{h}^{2}}={{p}^{2}}+{{b}^{2}} \\
& \Rightarrow h=\sqrt{{{p}^{2}}+{{b}^{2}}} \\
& \Rightarrow h=\sqrt{{{2}^{2}}+{{1}^{2}}}=\sqrt{5} \\
\end{align}\]
We take the arc $OB=\sqrt{5}$ from O and cut the number line at the point G. G will represent the number $\sqrt{5}$ in the number line.\[\]
Note: We note that $\sqrt{5}$ is an irrational number which means $\sqrt{5}$ cannot be expressed in the form of $\dfrac{p}{q}$where $p$ is any integer and $q$ is a non-zero integer. We can alternative solve by choosing ${{p}^{2}}=2,{{b}^{2}}=3$ but or that we need to construct right angled triangles with hypotenuse of length $\sqrt{2},\sqrt{3}$units.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE