Answer
Verified
476.1k+ views
Hint: In this question, we will first write secant function in terms of cos then understand the relation of $\cos x$ and ${{\cos }^{-1}}x$. We will observe the graph of $\cos x$ , and how they change signs and use it to plot a graph of $y={{\sec }^{-1}}\sec x$.
Complete step-by-step answer:
In given question, we have,
$y={{\sec }^{-1}}\sec x$
This can be written as
$\sec y=\sec x$.
We know that $\sec x=\dfrac{1}{\cos x}$, therefore, we can write above equation as,
$\dfrac{1}{\cos y}=\dfrac{1}{\cos x}$
Cross multiplying this, we get,
$\cos x=\cos y$
This can be written as,
$y={{\cos }^{-1}}\cos x$.
So, the graph of $y={{\sec }^{-1}}\sec x$ is the same as the graph of $y={{\cos }^{-1}}\cos x$.
Now, $\cos x$ is a periodic function with period $2\pi $, which means its values repeat in the same pattern after $2\pi $ increases in $x$. That is, $\cos x=\cos \left( 2\pi +x \right)$.
Since, cos x is periodic with period $2\pi $. Therefore, $y={{\cos }^{-1}}\cos x$ is also period with period $2\pi $.
Also, the domain here is a set of those values of $x$ for which ${{\cos }^{-1}}\cos x$ is defined. And, range is the set of values where ${{\cos }^{-1}}\cos x$ lies.
Now, for all real values of $x$, $\cos x$ lies between -1 and 1. And, between -1 and 1, the inverse function of cosine is defined. Therefore, ${{\cos }^{-1}}\cos x$ is defined for all real values of$x$.
We know, graph of $y=\cos x$ is:
We see that, in the interval $\left[ -\pi ,\pi \right]$ , for two different values of $x$ , we have the same value of $y$.
Also, from definition of cosine inverse, in this graph, we get,
${{\cos }^{-1}}y=x$
If we substitute $y=\cos x$ here, we get,
${{\cos }^{-1}}\cos x=x$.
Now, in graph of ${{\cos }^{-1}}\cos x$, we have,
$y={{\cos }^{-1}}\cos x$
$\Rightarrow y=x$
But, in the interval $\left[ -\pi ,\pi \right]$ , for two different values of $x$ , we have the same value of $y$ .
Let those two different values be represented by ${{y}_{1}},{{y}_{2}}$.
Now, as $x$ increases from $-\pi $ to 0, $\cos x$ increases from -1 to 1, and hence, ${{\cos }^{-1}}\cos x$ decreases from $\pi $ to 0. Therefore, here we will have, ${{y}_{1}}=-x$.
And as it increases from 0 to $\pi $, $\cos x$ decreases from 1 to -1, and hence, ${{\cos }^{-1}}\cos x$ increases from 0 to $\pi $. Therefore, here we will have, ${{y}_{2}}=x$ .
Also, from $-\pi $ to$\pi $, the length of interval is $2\pi $ and ${{\cos }^{-1}}\cos x$ periodic with period $2\pi $. Therefore, the rest of the graph will repeat the same as in interval $\left[ -\pi ,\pi \right]$.
Hence, the graph of ${{\cos }^{-1}}\cos x$ is given by:
Hence for the graph of $y={{\sec }^{-1}}\sec x$ is plotted above.
Note: While plotting the graph, keep in mind that for two different values of $x$ , ${{\cos }^{-1}}\cos x$ will have the same value in interval of length $2\pi $. So, looking at $y=x$, do not directly plot a graph of an infinite straight line.
Complete step-by-step answer:
In given question, we have,
$y={{\sec }^{-1}}\sec x$
This can be written as
$\sec y=\sec x$.
We know that $\sec x=\dfrac{1}{\cos x}$, therefore, we can write above equation as,
$\dfrac{1}{\cos y}=\dfrac{1}{\cos x}$
Cross multiplying this, we get,
$\cos x=\cos y$
This can be written as,
$y={{\cos }^{-1}}\cos x$.
So, the graph of $y={{\sec }^{-1}}\sec x$ is the same as the graph of $y={{\cos }^{-1}}\cos x$.
Now, $\cos x$ is a periodic function with period $2\pi $, which means its values repeat in the same pattern after $2\pi $ increases in $x$. That is, $\cos x=\cos \left( 2\pi +x \right)$.
Since, cos x is periodic with period $2\pi $. Therefore, $y={{\cos }^{-1}}\cos x$ is also period with period $2\pi $.
Also, the domain here is a set of those values of $x$ for which ${{\cos }^{-1}}\cos x$ is defined. And, range is the set of values where ${{\cos }^{-1}}\cos x$ lies.
Now, for all real values of $x$, $\cos x$ lies between -1 and 1. And, between -1 and 1, the inverse function of cosine is defined. Therefore, ${{\cos }^{-1}}\cos x$ is defined for all real values of$x$.
We know, graph of $y=\cos x$ is:
We see that, in the interval $\left[ -\pi ,\pi \right]$ , for two different values of $x$ , we have the same value of $y$.
Also, from definition of cosine inverse, in this graph, we get,
${{\cos }^{-1}}y=x$
If we substitute $y=\cos x$ here, we get,
${{\cos }^{-1}}\cos x=x$.
Now, in graph of ${{\cos }^{-1}}\cos x$, we have,
$y={{\cos }^{-1}}\cos x$
$\Rightarrow y=x$
But, in the interval $\left[ -\pi ,\pi \right]$ , for two different values of $x$ , we have the same value of $y$ .
Let those two different values be represented by ${{y}_{1}},{{y}_{2}}$.
Now, as $x$ increases from $-\pi $ to 0, $\cos x$ increases from -1 to 1, and hence, ${{\cos }^{-1}}\cos x$ decreases from $\pi $ to 0. Therefore, here we will have, ${{y}_{1}}=-x$.
And as it increases from 0 to $\pi $, $\cos x$ decreases from 1 to -1, and hence, ${{\cos }^{-1}}\cos x$ increases from 0 to $\pi $. Therefore, here we will have, ${{y}_{2}}=x$ .
Also, from $-\pi $ to$\pi $, the length of interval is $2\pi $ and ${{\cos }^{-1}}\cos x$ periodic with period $2\pi $. Therefore, the rest of the graph will repeat the same as in interval $\left[ -\pi ,\pi \right]$.
Hence, the graph of ${{\cos }^{-1}}\cos x$ is given by:
Hence for the graph of $y={{\sec }^{-1}}\sec x$ is plotted above.
Note: While plotting the graph, keep in mind that for two different values of $x$ , ${{\cos }^{-1}}\cos x$ will have the same value in interval of length $2\pi $. So, looking at $y=x$, do not directly plot a graph of an infinite straight line.
Recently Updated Pages
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Which one of the following places is not covered by class 10 social science CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The only snake that builds a nest is a Krait b King class 11 biology CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Why is there a time difference of about 5 hours between class 10 social science CBSE
Which places in India experience sunrise first and class 9 social science CBSE