How do you solve \[{{\left( \dfrac{4}{3} \right)}^{x}}=\left( \dfrac{27}{64} \right)\]?
Answer
Verified
442.2k+ views
Hint: Write \[\left( \dfrac{27}{64} \right)\] in the R.H.S. as exponent of \[\left( \dfrac{4}{3} \right)\] by using the formula: - \[\dfrac{1}{{{a}^{m}}}={{a}^{-m}}\]. Now, compare the bases on both the sides and equate the exponents to form a linear equation in x. Solve this equation for the value of x to get the answer.
Complete step by step answer:
Here, we have been provided with the exponential expression: - \[{{\left( \dfrac{4}{3} \right)}^{x}}=\left( \dfrac{27}{64} \right)\] and we are asked to solve it. That means we have to find the value of x.
Now, we can write \[\left( \dfrac{27}{64} \right)\] in the R.H.S. as exponential form with base \[\dfrac{3}{4}\]. Here, \[\dfrac{27}{64}=\dfrac{{{3}^{3}}}{{{4}^{3}}}\]. Using the identity \[\dfrac{{{a}^{m}}}{{{b}^{m}}}={{\left( \dfrac{a}{b} \right)}^{m}}\], we get,
\[\Rightarrow {{\left( \dfrac{4}{3} \right)}^{x}}={{\left( \dfrac{3}{4} \right)}^{3}}\]
Using the formula: - \[\dfrac{1}{{{a}^{m}}}={{a}^{-m}}\] in the R.H.S. to write \[{{\left( \dfrac{3}{4} \right)}^{3}}={{\left( \dfrac{4}{3} \right)}^{-3}}\], we get,
\[\Rightarrow {{\left( \dfrac{4}{3} \right)}^{x}}={{\left( \dfrac{4}{3} \right)}^{-3}}\]
As we can see that both the sides of the above exponential expression contains \[\left( \dfrac{4}{3} \right)\] as the base. So, we can equate the exponents by removing the base from both the sides. So, we have,
\[\Rightarrow x=-3\]
Hence, the value of x is -3.
Note: One may note that here we have used some basic formulas of the topic ‘exponents and powers’ to solve the question. You must remember some basic formulas such as: - \[{{a}^{m}}\times {{a}^{n}}={{a}^{m+n}}\], \[\dfrac{{{a}^{m}}}{{{a}^{n}}}={{a}^{m-n}}\] and \[{{\left( {{a}^{m}} \right)}^{n}}={{a}^{m\times n}}\] because they are used with the help of logarithm. We can take log to the base \[\dfrac{4}{3}\] or \[\dfrac{3}{4}\], i.e., \[{{\log }_{\dfrac{4}{3}}}\]or \[{{\log }_{\dfrac{3}{4}}}\], both the sides and use the property \[{{\log }_{n}}n=1\] to get the answer. Here, n > 0 and \[n\ne 1\].
Complete step by step answer:
Here, we have been provided with the exponential expression: - \[{{\left( \dfrac{4}{3} \right)}^{x}}=\left( \dfrac{27}{64} \right)\] and we are asked to solve it. That means we have to find the value of x.
Now, we can write \[\left( \dfrac{27}{64} \right)\] in the R.H.S. as exponential form with base \[\dfrac{3}{4}\]. Here, \[\dfrac{27}{64}=\dfrac{{{3}^{3}}}{{{4}^{3}}}\]. Using the identity \[\dfrac{{{a}^{m}}}{{{b}^{m}}}={{\left( \dfrac{a}{b} \right)}^{m}}\], we get,
\[\Rightarrow {{\left( \dfrac{4}{3} \right)}^{x}}={{\left( \dfrac{3}{4} \right)}^{3}}\]
Using the formula: - \[\dfrac{1}{{{a}^{m}}}={{a}^{-m}}\] in the R.H.S. to write \[{{\left( \dfrac{3}{4} \right)}^{3}}={{\left( \dfrac{4}{3} \right)}^{-3}}\], we get,
\[\Rightarrow {{\left( \dfrac{4}{3} \right)}^{x}}={{\left( \dfrac{4}{3} \right)}^{-3}}\]
As we can see that both the sides of the above exponential expression contains \[\left( \dfrac{4}{3} \right)\] as the base. So, we can equate the exponents by removing the base from both the sides. So, we have,
\[\Rightarrow x=-3\]
Hence, the value of x is -3.
Note: One may note that here we have used some basic formulas of the topic ‘exponents and powers’ to solve the question. You must remember some basic formulas such as: - \[{{a}^{m}}\times {{a}^{n}}={{a}^{m+n}}\], \[\dfrac{{{a}^{m}}}{{{a}^{n}}}={{a}^{m-n}}\] and \[{{\left( {{a}^{m}} \right)}^{n}}={{a}^{m\times n}}\] because they are used with the help of logarithm. We can take log to the base \[\dfrac{4}{3}\] or \[\dfrac{3}{4}\], i.e., \[{{\log }_{\dfrac{4}{3}}}\]or \[{{\log }_{\dfrac{3}{4}}}\], both the sides and use the property \[{{\log }_{n}}n=1\] to get the answer. Here, n > 0 and \[n\ne 1\].
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success
Master Class 9 English: Engaging Questions & Answers for Success
Master Class 9 Science: Engaging Questions & Answers for Success
Master Class 9 Social Science: Engaging Questions & Answers for Success
Master Class 9 Maths: Engaging Questions & Answers for Success
Class 9 Question and Answer - Your Ultimate Solutions Guide
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Difference Between Plant Cell and Animal Cell
What is pollution? How many types of pollution? Define it
What is the color of ferrous sulphate crystals? How does this color change after heating? Name the products formed on strongly heating ferrous sulphate crystals. What type of chemical reaction occurs in this type of change.