Solve the following equation:
\[
{x^2} + xy + xz = 18, \\
{y^2} + yz + yz + 12 = 0, \\
{z^2} + zx + zy = 30. \\
\\
{\mathbf{A}}.\,x = \pm 2,y = \mp 2,z = \pm 4 \\
{\mathbf{B}}.\,x = \pm 3,y = \mp 2,z = \pm 5 \\
{\mathbf{C}}.\,\,x = \pm 4,y = \pm 5,z = \pm 5 \\
{\mathbf{D}}.\,{\text{None of the above}} \\
\]
Answer
Verified
511.8k+ views
Hint: In order to solve this question, we have to solve the three equations given in the question. We can take something common then solve it by eliminating or dividing.
The given equations are,
\[{x^2} + xy + xz = 18\],
Taking $x$ as common from LHS we get,
\[
x(x + y + z) = 18\,\,\,\,\,\,...({\text{i}}) \\
\\
{y^2} + yz + yz + 12 = 0 \\
\]
Taking $y$ as common from LHS we get,
\[y(x + y + z) = - 12\,\,\,\,\,\,\,\,\,...({\text{ii}})\]
\[{z^2} + zx + zy = 30\]
Taking $z$ as common from LHS we get,
\[z(x + y + z) = 30\,\,\,\,\,\,\,\,\,...({\text{iii}})\]
Dividing (i) by (ii) we get,
\[
\dfrac{x}{y} = \dfrac{{ - 18}}{{12}} = \dfrac{{ - 3}}{2} \\
y = - \dfrac{2}{3}x\;\;{\text{ }}\;.......\left( a \right) \\
\]
Dividing (i) by (iii) we get,
\[\dfrac{x}{z} = \dfrac{{18}}{{30}} = \dfrac{3}{5}\]
Then,
\[z = \dfrac{5}{3}x\,\,\,\,\,\,......(b)\]
Substituting $(a)$ and $(b)$ in (i) we get,
\[x\left( {x - \dfrac{2}{3}x + \dfrac{5}{3}x} \right) = 18\]
On solving above we get,
\[
2{x^2} = 18 \\
{x^2} = 9 \\
\]
Therefore either \[x = 3{\text{ }}\] or \[x = - 3\]
That is \[x = \pm 3\]
On putting the value of $x$ in $(a)$ and $(b)$ we get,
\[
y = - \dfrac{2}{3}( \pm 3) = \mp 2 \\
\\
z = \dfrac{5}{3}( \pm 3) = \pm 5 \\
\]
Therefore,
\[x = \pm 3,y = \mp 2,z = \pm 5\]
Hence the correct option is B.
Note: In this question we have taken \[x,y,z\] common from the equation \[{\text{(i),(ii),(iii)}}\] then we got various equations which can be used to find the values of \[x,y,z\] 5as done above . Therefore we can find the values of various variables . We can multiply, divide, add or subtract between these equations to get the desired results.
The given equations are,
\[{x^2} + xy + xz = 18\],
Taking $x$ as common from LHS we get,
\[
x(x + y + z) = 18\,\,\,\,\,\,...({\text{i}}) \\
\\
{y^2} + yz + yz + 12 = 0 \\
\]
Taking $y$ as common from LHS we get,
\[y(x + y + z) = - 12\,\,\,\,\,\,\,\,\,...({\text{ii}})\]
\[{z^2} + zx + zy = 30\]
Taking $z$ as common from LHS we get,
\[z(x + y + z) = 30\,\,\,\,\,\,\,\,\,...({\text{iii}})\]
Dividing (i) by (ii) we get,
\[
\dfrac{x}{y} = \dfrac{{ - 18}}{{12}} = \dfrac{{ - 3}}{2} \\
y = - \dfrac{2}{3}x\;\;{\text{ }}\;.......\left( a \right) \\
\]
Dividing (i) by (iii) we get,
\[\dfrac{x}{z} = \dfrac{{18}}{{30}} = \dfrac{3}{5}\]
Then,
\[z = \dfrac{5}{3}x\,\,\,\,\,\,......(b)\]
Substituting $(a)$ and $(b)$ in (i) we get,
\[x\left( {x - \dfrac{2}{3}x + \dfrac{5}{3}x} \right) = 18\]
On solving above we get,
\[
2{x^2} = 18 \\
{x^2} = 9 \\
\]
Therefore either \[x = 3{\text{ }}\] or \[x = - 3\]
That is \[x = \pm 3\]
On putting the value of $x$ in $(a)$ and $(b)$ we get,
\[
y = - \dfrac{2}{3}( \pm 3) = \mp 2 \\
\\
z = \dfrac{5}{3}( \pm 3) = \pm 5 \\
\]
Therefore,
\[x = \pm 3,y = \mp 2,z = \pm 5\]
Hence the correct option is B.
Note: In this question we have taken \[x,y,z\] common from the equation \[{\text{(i),(ii),(iii)}}\] then we got various equations which can be used to find the values of \[x,y,z\] 5as done above . Therefore we can find the values of various variables . We can multiply, divide, add or subtract between these equations to get the desired results.
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success
Master Class 9 English: Engaging Questions & Answers for Success
Master Class 9 Science: Engaging Questions & Answers for Success
Master Class 9 Social Science: Engaging Questions & Answers for Success
Master Class 9 Maths: Engaging Questions & Answers for Success
Class 9 Question and Answer - Your Ultimate Solutions Guide
Trending doubts
Name the states which share their boundary with Indias class 9 social science CBSE
Which of the following is the most important sentence class 9 english CBSE
On an outline map of India mark the Karakoram range class 9 social science CBSE
Why did India adopt the multiparty system class 9 social science CBSE
What occurs in the minerals of the apatite family APhosphorus class 9 chemistry CBSE
Who is eligible for RTE class 9 social science CBSE