The diagram shows a solid formed by joining a hemisphere, of radius r cm, to a cylinder, of radius r cm and height h cm. The total height of the solid is \[18{\text{ }}cm\]and the surface area is \[205\pi c{m^2}.\]
Find the value of r and the value of h.
Answer
Verified
471.6k+ views
Hint: At first, we will calculate the total surface area of the solid given. For that we will use the formula,
Curved surface area of hemisphere \[ = {\text{ }}2\pi {r^2}\]
Surface area of cylinder \[ = \pi {r^2} + {\text{ }}2\pi rh\]
After putting the value in the above formulas and then on adding we will get the total surface area of the solid. Total height of the solid is also given, after using this value, we will get the value of r and h.
Complete step-by-step answer:
Step 1: We have been given total height of the solid \[ = {\text{ }}18{\text{ }}cm\]
And also, total surface area of the solid \[ = {\text{ }}205\pi c{m^2} \ldots \ldots eq.{\text{ }}\left( 1 \right)\]
Total surface area of solid \[ = \] Curved surface area of hemisphere \[ + \] Surface area of cylinder \[ = {\text{ }}2\pi {r^2} + \pi {r^2} + {\text{ }}2\pi r{h^{}} \ldots \ldots eq.{\text{ }}{\left( 2 \right)^{}}\]
On equating, \[eq.{\text{ }}\left( 1 \right)\] and \[eq.{\text{ }}\left( 2 \right),\]we get
\[\begin{array}{*{20}{l}}
{3\pi {r^2} + {\text{ }}2\pi rh{\text{ }} = {\text{ }}205\pi } \\
{3{r^2} + {\text{ }}2rh{\text{ }} = {\text{ }}205 \ldots ..eq.{\text{ }}\left( 3 \right)}
\end{array}\]
Step 2: Since, \[h{\text{ }} + {\text{ }}r{\text{ }} = {\text{ }}18{\text{ }}cm\] (given total height of the solid)
\[h{\text{ }} = {\text{ }}18{\text{ }}-{\text{ }}r\]
On putting the value of \[h{\text{ }} = {\text{ }}18{\text{ }}-{\text{ }}r{\text{ }}in{\text{ }}eq.{\text{ }}\left( 3 \right),\] we get
\[\begin{array}{*{20}{l}}
{3{r^2} + {\text{ }}2r{\text{ }}\left( {18{\text{ }}-{\text{ }}r} \right){\text{ }} = {\text{ }}205} \\
{3{r^2} + {\text{ }}36r{\text{ }}-{\text{ }}2{r^2} = {\text{ }}205} \\
{{r^2} + {\text{ }}36r{\text{ }}-{\text{ }}205{\text{ }} = {\text{ }}0} \\
{\left( {r{\text{ }} + {\text{ }}41} \right){\text{ }}\left( {r{\text{ }} - {\text{ }}5} \right){\text{ }} = {\text{ }}0} \\
{r{\text{ }} = {\text{ }} - {\text{ }}41,{\text{ }}5}
\end{array}\]
Here, we will neglect, \[r = {\text{ }} - 41,{\text{ }}we{\text{ }}get{\text{ }}r{\text{ }} = {\text{ }}5{\text{ }}cm\]
Step 3: Now on putting the value of r in \[h{\text{ }} = {\text{ }}18{\text{ }}-{\text{ }}r,\]we get
\[h{\text{ }} = {\text{ }}18{\text{ }}-{\text{ }}5{\text{ }} = {\text{ }}13{\text{ }}cm\]
Thus, radius and height of the solid are \[5{\text{ }}cm\] and \[13{\text{ }}cm\]respectively.
Note: Students should take care, that here, we have neglected the negative value of r, as radius can’t be negative.
Curved surface area of hemisphere \[ = {\text{ }}2\pi {r^2}\]
Surface area of cylinder \[ = \pi {r^2} + {\text{ }}2\pi rh\]
After putting the value in the above formulas and then on adding we will get the total surface area of the solid. Total height of the solid is also given, after using this value, we will get the value of r and h.
Complete step-by-step answer:
Step 1: We have been given total height of the solid \[ = {\text{ }}18{\text{ }}cm\]
And also, total surface area of the solid \[ = {\text{ }}205\pi c{m^2} \ldots \ldots eq.{\text{ }}\left( 1 \right)\]
Total surface area of solid \[ = \] Curved surface area of hemisphere \[ + \] Surface area of cylinder \[ = {\text{ }}2\pi {r^2} + \pi {r^2} + {\text{ }}2\pi r{h^{}} \ldots \ldots eq.{\text{ }}{\left( 2 \right)^{}}\]
On equating, \[eq.{\text{ }}\left( 1 \right)\] and \[eq.{\text{ }}\left( 2 \right),\]we get
\[\begin{array}{*{20}{l}}
{3\pi {r^2} + {\text{ }}2\pi rh{\text{ }} = {\text{ }}205\pi } \\
{3{r^2} + {\text{ }}2rh{\text{ }} = {\text{ }}205 \ldots ..eq.{\text{ }}\left( 3 \right)}
\end{array}\]
Step 2: Since, \[h{\text{ }} + {\text{ }}r{\text{ }} = {\text{ }}18{\text{ }}cm\] (given total height of the solid)
\[h{\text{ }} = {\text{ }}18{\text{ }}-{\text{ }}r\]
On putting the value of \[h{\text{ }} = {\text{ }}18{\text{ }}-{\text{ }}r{\text{ }}in{\text{ }}eq.{\text{ }}\left( 3 \right),\] we get
\[\begin{array}{*{20}{l}}
{3{r^2} + {\text{ }}2r{\text{ }}\left( {18{\text{ }}-{\text{ }}r} \right){\text{ }} = {\text{ }}205} \\
{3{r^2} + {\text{ }}36r{\text{ }}-{\text{ }}2{r^2} = {\text{ }}205} \\
{{r^2} + {\text{ }}36r{\text{ }}-{\text{ }}205{\text{ }} = {\text{ }}0} \\
{\left( {r{\text{ }} + {\text{ }}41} \right){\text{ }}\left( {r{\text{ }} - {\text{ }}5} \right){\text{ }} = {\text{ }}0} \\
{r{\text{ }} = {\text{ }} - {\text{ }}41,{\text{ }}5}
\end{array}\]
Here, we will neglect, \[r = {\text{ }} - 41,{\text{ }}we{\text{ }}get{\text{ }}r{\text{ }} = {\text{ }}5{\text{ }}cm\]
Step 3: Now on putting the value of r in \[h{\text{ }} = {\text{ }}18{\text{ }}-{\text{ }}r,\]we get
\[h{\text{ }} = {\text{ }}18{\text{ }}-{\text{ }}5{\text{ }} = {\text{ }}13{\text{ }}cm\]
Thus, radius and height of the solid are \[5{\text{ }}cm\] and \[13{\text{ }}cm\]respectively.
Note: Students should take care, that here, we have neglected the negative value of r, as radius can’t be negative.
Recently Updated Pages
A house design given on an isometric dot sheet in an class 9 maths CBSE
How does air exert pressure class 9 chemistry CBSE
Name the highest summit of Nilgiri hills AVelliangiri class 9 social science CBSE
If log x+1x2+x624 then the values of twice the sum class 9 maths CBSE
How do you convert 245 into fraction and decimal class 9 maths CBSE
ABCD is a trapezium in which ABparallel DC and AB 2CD class 9 maths CBSE
Trending doubts
What is the role of NGOs during disaster managemen class 9 social science CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The highest mountain peak in India is A Kanchenjunga class 9 social science CBSE
Describe the 4 stages of the Unification of German class 9 social science CBSE
What is the full form of pH?
Primary function of sweat glands is A Thermoregulation class 9 biology CBSE