Answer
Verified
448.8k+ views
Hint: To solve this question, we simply have to find the electric field outside the disc. We just have to use the formulae of electric field at $x$ from the centre for a small surface and then integrate it to get the answer.
Complete step by step answer:
Let’s consider the disc of the radius $r$. It is given that $\sigma $ is the uniform charge density. Let $E$ be the electric field at the required point on the axis of the disc at a distance from its centre.
We have to assume the charge distribution as a collection of concentric rings of charge. Let’s consider one such ring of radius $r$ and charge $dq$.
Let a small element of area = $dA = \left( {2\pi r} \right)dr$
And the charge distribution of the ring = $dq = \sigma dA = 2\pi r\sigma dA$
Because of symmetry, there is no vertical component of the electric field at point P. So, there is only a horizontal component. We know that for a ring:
$ \Rightarrow dE = \dfrac{{k\left( {dq} \right)x}}{{{{\left( {{x^2} + {r^2}} \right)}^{\dfrac{3}{2}}}}}$
Here $x$ is the distance from the surface to the point P, $E$ is the electric field, $q$ is the charge, $r$ is the radius of the earth.
Putting the value of $dq$, we get
$ \Rightarrow dE = \dfrac{{k\left( {2\pi r\sigma dA} \right)x}}{{{{\left( {{x^2} + {r^2}} \right)}^{\dfrac{3}{2}}}}}$
Integrating both sides,
$ \Rightarrow \int\limits_0^E {dE} = \int\limits_0^a {\dfrac{{k\left( {2\pi r\sigma dr} \right)x}}{{{{\left( {{x^2} + {r^2}} \right)}^{\dfrac{3}{2}}}}}} $
Let this be 1
Putting and differentiating we get,
$ \Rightarrow {x^2} + {r^2} = {t^2}$
$ \Rightarrow 2rdr = 2tdt$
At $r = 0$, $t = x$
At $r = a$, $t = \sqrt {{a^2} + {x^2}} $
Using this in 1, we get,
$ \Rightarrow \int\limits_0^E {dE} = \dfrac{\sigma }{{2{\varepsilon _0}}}\int\limits_x^{\sqrt {{a^2} + {x^2}} } {\dfrac{{tdt}}{{{t^3}}}} $
$ \Rightarrow E = \dfrac{\sigma }{{2{\varepsilon _0}}}\left[ { - \dfrac{1}{t}} \right]_x^{\sqrt {{a^2} + {x^2}} }$
$ \Rightarrow E = \dfrac{\sigma }{{2{\varepsilon _0}}}\left[ {\dfrac{1}{x} - \dfrac{1}{{\sqrt {{a^2} + {x^2}} }}} \right]$
$ \Rightarrow E = \dfrac{\sigma }{{2{\varepsilon _0}}}\left[ {\dfrac{1}{x} - \dfrac{1}{{\sqrt {{a^2} + {x^2}} }}} \right]$
$ \Rightarrow E = \dfrac{\sigma }{{2{\varepsilon _0}}}\left[ {1 - \dfrac{1}{{\sqrt {\dfrac{{{a^2}}}{{{x^2}}} + } 1}}} \right]$
For a very small $\dfrac{{{a^2}}}{{{x^2}}} \approx 1$
$ \therefore E = \dfrac{\sigma }{{2{\varepsilon _0}}}$
So option (A) is the correct option.
Note: Thus from the above derivation we can say that the electric field at a point due to a charged circular disc is independent from the distance of the point from the center. It depends on the surface charge density of the disc. Just like here we assumed the disc to be made up of many infinitesimally thin discs, we can use the same iea to calculate the electric field at a point due to a charged hollow cylinder.
Complete step by step answer:
Let’s consider the disc of the radius $r$. It is given that $\sigma $ is the uniform charge density. Let $E$ be the electric field at the required point on the axis of the disc at a distance from its centre.
We have to assume the charge distribution as a collection of concentric rings of charge. Let’s consider one such ring of radius $r$ and charge $dq$.
Let a small element of area = $dA = \left( {2\pi r} \right)dr$
And the charge distribution of the ring = $dq = \sigma dA = 2\pi r\sigma dA$
Because of symmetry, there is no vertical component of the electric field at point P. So, there is only a horizontal component. We know that for a ring:
$ \Rightarrow dE = \dfrac{{k\left( {dq} \right)x}}{{{{\left( {{x^2} + {r^2}} \right)}^{\dfrac{3}{2}}}}}$
Here $x$ is the distance from the surface to the point P, $E$ is the electric field, $q$ is the charge, $r$ is the radius of the earth.
Putting the value of $dq$, we get
$ \Rightarrow dE = \dfrac{{k\left( {2\pi r\sigma dA} \right)x}}{{{{\left( {{x^2} + {r^2}} \right)}^{\dfrac{3}{2}}}}}$
Integrating both sides,
$ \Rightarrow \int\limits_0^E {dE} = \int\limits_0^a {\dfrac{{k\left( {2\pi r\sigma dr} \right)x}}{{{{\left( {{x^2} + {r^2}} \right)}^{\dfrac{3}{2}}}}}} $
Let this be 1
Putting and differentiating we get,
$ \Rightarrow {x^2} + {r^2} = {t^2}$
$ \Rightarrow 2rdr = 2tdt$
At $r = 0$, $t = x$
At $r = a$, $t = \sqrt {{a^2} + {x^2}} $
Using this in 1, we get,
$ \Rightarrow \int\limits_0^E {dE} = \dfrac{\sigma }{{2{\varepsilon _0}}}\int\limits_x^{\sqrt {{a^2} + {x^2}} } {\dfrac{{tdt}}{{{t^3}}}} $
$ \Rightarrow E = \dfrac{\sigma }{{2{\varepsilon _0}}}\left[ { - \dfrac{1}{t}} \right]_x^{\sqrt {{a^2} + {x^2}} }$
$ \Rightarrow E = \dfrac{\sigma }{{2{\varepsilon _0}}}\left[ {\dfrac{1}{x} - \dfrac{1}{{\sqrt {{a^2} + {x^2}} }}} \right]$
$ \Rightarrow E = \dfrac{\sigma }{{2{\varepsilon _0}}}\left[ {\dfrac{1}{x} - \dfrac{1}{{\sqrt {{a^2} + {x^2}} }}} \right]$
$ \Rightarrow E = \dfrac{\sigma }{{2{\varepsilon _0}}}\left[ {1 - \dfrac{1}{{\sqrt {\dfrac{{{a^2}}}{{{x^2}}} + } 1}}} \right]$
For a very small $\dfrac{{{a^2}}}{{{x^2}}} \approx 1$
$ \therefore E = \dfrac{\sigma }{{2{\varepsilon _0}}}$
So option (A) is the correct option.
Note: Thus from the above derivation we can say that the electric field at a point due to a charged circular disc is independent from the distance of the point from the center. It depends on the surface charge density of the disc. Just like here we assumed the disc to be made up of many infinitesimally thin discs, we can use the same iea to calculate the electric field at a point due to a charged hollow cylinder.
Recently Updated Pages
Fill in the blanks with a suitable option She showed class 10 english CBSE
TISCO is located on the banks of which river A Tungabhadra class 10 social science CBSE
What is greed for clothes A Simply desire to have them class 10 social science CBSE
What does the 17th Parallel line separate A South and class 10 social science CBSE
The original home of the gypsies was A Egypt B Russia class 10 social science CBSE
The angle between the true north south line and the class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
Which is the longest day and shortest night in the class 11 sst CBSE
What is the definite integral of zero a constant b class 12 maths CBSE
Name five important trees found in the tropical evergreen class 10 social studies CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE