
The factors of ${x^3} - 1 + {y^3} + 3xy$ are:
A. $\left( {x - 1 + y} \right)\left( {{x^2} + 1 + {y^2} + x + y - xy} \right)$
B. $\left( {x + y + 1} \right)\left( {{x^2} + {y^2} + 1 - xy - x - y} \right)$
C. $\left( {x - 1 + y} \right)\left( {{x^2} - 1 - {y^2} + x + y + xy} \right)$
D. $3\left( {x + y + 1} \right)\left( {{x^2} + {y^2} - 1} \right)$
Answer
552.9k+ views
Hint: Here we need to use the formula where we can compare the given term by the formula:
${a^3} + {b^3} + {c^3} - 3abc = \left( {a + b + c} \right)\left( {{a^2} + {b^2} + {c^2} - ab - bc - ca} \right)$
So we can write ${x^3} - 1 + {y^3} + 3xy$ in this form and then get the required answer.
Complete step by step solution:
Here we are given that we need to find the factors of ${x^3} - 1 + {y^3} + 3xy$ which means we need to write it in the form of the multiplication of the two terms. So we need to see which formula is to be used.
We know that as we have the formula where we can get:
${a^3} + {b^3} + {c^3} - 3abc = \left( {a + b + c} \right)\left( {{a^2} + {b^2} + {c^2} - ab - bc - ca} \right)$
Now we can compare this formula with the given equation which is ${x^3} - 1 + {y^3} + 3xy$
Now we can write this equation as:
${x^3} + {\left( { - 1} \right)^3} + {y^3} - 3\left( { - 1} \right)xy$
If we compare this with ${a^3} + {b^3} + {c^3} - 3abc$
Then we can say that:
$
a = x \\
b = - 1 \\
c = y \\
$
Now we can simply substitute the values of all the variables of the formula with the given equation, then we will get:
${x^3} + {\left( { - 1} \right)^3} + {y^3} - 3\left( { - 1} \right)xy$$ = \left( {x - 1 + y} \right)\left( {{x^2} + {{\left( { - 1} \right)}^2} + {y^2} - x\left( { - 1} \right) - \left( { - 1} \right)y - xy} \right)$
${x^3} + {\left( { - 1} \right)^3} + {y^3} - 3\left( { - 1} \right)xy$$ = \left( {x - 1 + y} \right)\left( {{x^2} + 1 + {y^2} + x + y - xy} \right)$
Hence whenever we are given the equation and the factors are to be found then we simply need to apply the formula and then compare the terms and get the factors in the simplified form.
So we have got that:
${x^3} + {\left( { - 1} \right)^3} + {y^3} - 3\left( { - 1} \right)xy$$ = \left( {x - 1 + y} \right)\left( {{x^2} + 1 + {y^2} + x + y - xy} \right)$
Hence we can say that A) is the correct option out of the given four options.
Note:
Here the student must know the general formula of all the cubic as well as the square option. If we are given to find the factors of $\left( {{a^2} + {b^2} + 2ab - {c^2}} \right)$ then we can write it as $\left( {{{\left( {a + b} \right)}^2} - {c^2}} \right)$.
Now we can apply the formula ${x^2} - {y^2} = \left( {x + y} \right)\left( {x - y} \right)$ and get the factors in simplified form.
${a^3} + {b^3} + {c^3} - 3abc = \left( {a + b + c} \right)\left( {{a^2} + {b^2} + {c^2} - ab - bc - ca} \right)$
So we can write ${x^3} - 1 + {y^3} + 3xy$ in this form and then get the required answer.
Complete step by step solution:
Here we are given that we need to find the factors of ${x^3} - 1 + {y^3} + 3xy$ which means we need to write it in the form of the multiplication of the two terms. So we need to see which formula is to be used.
We know that as we have the formula where we can get:
${a^3} + {b^3} + {c^3} - 3abc = \left( {a + b + c} \right)\left( {{a^2} + {b^2} + {c^2} - ab - bc - ca} \right)$
Now we can compare this formula with the given equation which is ${x^3} - 1 + {y^3} + 3xy$
Now we can write this equation as:
${x^3} + {\left( { - 1} \right)^3} + {y^3} - 3\left( { - 1} \right)xy$
If we compare this with ${a^3} + {b^3} + {c^3} - 3abc$
Then we can say that:
$
a = x \\
b = - 1 \\
c = y \\
$
Now we can simply substitute the values of all the variables of the formula with the given equation, then we will get:
${x^3} + {\left( { - 1} \right)^3} + {y^3} - 3\left( { - 1} \right)xy$$ = \left( {x - 1 + y} \right)\left( {{x^2} + {{\left( { - 1} \right)}^2} + {y^2} - x\left( { - 1} \right) - \left( { - 1} \right)y - xy} \right)$
${x^3} + {\left( { - 1} \right)^3} + {y^3} - 3\left( { - 1} \right)xy$$ = \left( {x - 1 + y} \right)\left( {{x^2} + 1 + {y^2} + x + y - xy} \right)$
Hence whenever we are given the equation and the factors are to be found then we simply need to apply the formula and then compare the terms and get the factors in the simplified form.
So we have got that:
${x^3} + {\left( { - 1} \right)^3} + {y^3} - 3\left( { - 1} \right)xy$$ = \left( {x - 1 + y} \right)\left( {{x^2} + 1 + {y^2} + x + y - xy} \right)$
Hence we can say that A) is the correct option out of the given four options.
Note:
Here the student must know the general formula of all the cubic as well as the square option. If we are given to find the factors of $\left( {{a^2} + {b^2} + 2ab - {c^2}} \right)$ then we can write it as $\left( {{{\left( {a + b} \right)}^2} - {c^2}} \right)$.
Now we can apply the formula ${x^2} - {y^2} = \left( {x + y} \right)\left( {x - y} \right)$ and get the factors in simplified form.
Recently Updated Pages
Master Class 8 Social Science: Engaging Questions & Answers for Success

Master Class 8 English: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 8 Maths: Engaging Questions & Answers for Success

Master Class 8 Science: Engaging Questions & Answers for Success

Master Class 7 English: Engaging Questions & Answers for Success

Trending doubts
Difference Between Plant Cell and Animal Cell

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Who is eligible for RTE class 9 social science CBSE

Which places in India experience sunrise first and class 9 social science CBSE

What is pollution? How many types of pollution? Define it

Name 10 Living and Non living things class 9 biology CBSE

