The largest number, which divides 25, 73 and 97 to leave the same remainder in each case, is
A) 24
B) 23
C) 21
D) 6
Answer
Verified
503.4k+ views
Hint: In this question, we use the concept of HCF. The Highest Common Factor of two or more numbers is the highest number by which all the given numbers are divisible without leaving any remainders. Basically, it is the largest number that divides all the given numbers.
Complete step-by-step answer:
Given, we have three numbers 25, 73 and 97.
Since the remainders are the same the difference of every pair of given numbers would be exactly divisible by the required number.
The difference of every pair of given numbers are,
$73 - 25 = 48,97 - 73 = 24,97 - 25 = 72$
So, the required number is HCF of 24, 48 and 72.
Now, the factors of $24 = 2 \times 2 \times 2 \times 3 = {2^3} \times 3$
The factors of \[48 = 2 \times 2 \times 2 \times 2 \times 3 = {2^4} \times 3\]
The factors of \[72 = 2 \times 2 \times 2 \times 3 \times 3 = {2^3} \times {3^2}\]
Now, the Highest Common Factor (HCF) of 24, 48 and 72 is the highest number by which all the given numbers are divisible without leaving any remainders.
$
HCF = {2^3} \times 3 = 8 \times 3 \\
\Rightarrow HCF = 24 \\
$
The required number is 24.
So, the correct option is (a).
Note: Whenever we face such types of problems we use some important points. First we subtract the pair of given numbers then find the factors of the upcoming number. So, the HCF of the upcoming number is equal to the required number.
Complete step-by-step answer:
Given, we have three numbers 25, 73 and 97.
Since the remainders are the same the difference of every pair of given numbers would be exactly divisible by the required number.
The difference of every pair of given numbers are,
$73 - 25 = 48,97 - 73 = 24,97 - 25 = 72$
So, the required number is HCF of 24, 48 and 72.
Now, the factors of $24 = 2 \times 2 \times 2 \times 3 = {2^3} \times 3$
The factors of \[48 = 2 \times 2 \times 2 \times 2 \times 3 = {2^4} \times 3\]
The factors of \[72 = 2 \times 2 \times 2 \times 3 \times 3 = {2^3} \times {3^2}\]
Now, the Highest Common Factor (HCF) of 24, 48 and 72 is the highest number by which all the given numbers are divisible without leaving any remainders.
$
HCF = {2^3} \times 3 = 8 \times 3 \\
\Rightarrow HCF = 24 \\
$
The required number is 24.
So, the correct option is (a).
Note: Whenever we face such types of problems we use some important points. First we subtract the pair of given numbers then find the factors of the upcoming number. So, the HCF of the upcoming number is equal to the required number.
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success
Master Class 9 English: Engaging Questions & Answers for Success
Master Class 9 Science: Engaging Questions & Answers for Success
Master Class 9 Social Science: Engaging Questions & Answers for Success
Master Class 9 Maths: Engaging Questions & Answers for Success
Class 9 Question and Answer - Your Ultimate Solutions Guide
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
What is the role of NGOs during disaster managemen class 9 social science CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
What is pollution? How many types of pollution? Define it
Voters list is known as A Ticket B Nomination form class 9 social science CBSE