Answer
Verified
410.7k+ views
Hint: Here, we will use Fermat’s Principle of Extremum path. Fermat's principle states that “light travels between two points along the path that requires the least time, as compared to other nearby paths.” From Fermat's principle, one can derive (A) the law of reflection [the angle of incidence is equal to the angle of reflection] and (B) the law of refraction [Snell's law].
Complete step by step answer: According to Fermat’s Principle of extremum path, when light travels between two points A and B, it follows that path which requires the least time or minimum time.
Light travels along a path having minimum optical path length. But it is found that there are a number of cases in which the real path of light is the one for which the take taken is not a minimum but maximum.
-In the case of a spherical reflector, light prefers maximum time.
-In the case of an elliptical reflector, the light may take the same time for all paths.
So, the modified Fermat’s principle will be, a light ray traveling from one point to another point will traverse a path for which, compared to all neighboring paths, the time required is minimum or maximum or stationary. Since, in the question, we have a spherical reflector, therefore, the path length traveled by the light will be maximum.
Hence, option (a) is the correct answer.
Note: Fermat’s principle gives us an idea about both time and path length. One needs to be careful while considering the conditions for maximum and minimum path length and time. They are two different things and might affect the answer.
Complete step by step answer: According to Fermat’s Principle of extremum path, when light travels between two points A and B, it follows that path which requires the least time or minimum time.
Light travels along a path having minimum optical path length. But it is found that there are a number of cases in which the real path of light is the one for which the take taken is not a minimum but maximum.
-In the case of a spherical reflector, light prefers maximum time.
-In the case of an elliptical reflector, the light may take the same time for all paths.
So, the modified Fermat’s principle will be, a light ray traveling from one point to another point will traverse a path for which, compared to all neighboring paths, the time required is minimum or maximum or stationary. Since, in the question, we have a spherical reflector, therefore, the path length traveled by the light will be maximum.
Hence, option (a) is the correct answer.
Note: Fermat’s principle gives us an idea about both time and path length. One needs to be careful while considering the conditions for maximum and minimum path length and time. They are two different things and might affect the answer.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Who gave the slogan Jai Hind ALal Bahadur Shastri BJawaharlal class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE