Answer
Verified
432.9k+ views
Hint: Here we have to find the area of the triangle whose three sides are given. Before finding the area, we will check whether the triangle is a right angled triangle or not by using Pythagora's theorem. Then we will directly apply the formula of area for the right angled triangle. From there, we will get the area of the required triangle.
Formula used:
We will use the formula for the area of the triangle ,\[\dfrac{1}{2} \times b \times h\] , where \[b\] is the base and \[h\]is the height of the triangle.
Complete step-by-step answer:
The given sides of a triangle are 5 cm, 12 cm and 13 cm.
We will draw the triangle using the given measurement.
We have to find the area of the triangle here, but we will first check whether the given triangle is Pythagoras or not.
We know the Pythagoras theorem states the square of the hypotenuse is equal to the sum of the squares of the other two sides of a triangle.
Therefore, applying the theorem, we get
\[ \Rightarrow {13^2} = {5^2} + {12^2}\]
Finding the squares of the numbers, we get
\[ \Rightarrow 169 = 25 + 144\]
On adding numbers, we get
\[ \Rightarrow 169 = 169\]
It is satisfying the Pythagoras theorem, thus the given triangle is a right-angled triangle.
Thus, the hypotenuse is 13 cm, base is 5 cm and height is 2 cm.
Now, we will calculate the area of this right angled triangle.
We will substitute the value of base and height of the triangle.
\[ \Rightarrow {\rm{Area}} = \dfrac{1}{2} \times 5 \times 12\]
Multiplying the numbers, we get
\[ \Rightarrow {\rm{Area}} = 30c{m^2}\]
But, we need an area in\[{m^2}\].
We know, \[1cm = \dfrac{1}{{100}}m\]
Thus, \[1c{m^2} = \dfrac{1}{{10000}}{m^2}\]
Therefore, area becomes;
\[ \Rightarrow {\rm{Area}} = 30 \times \dfrac{1}{{10000}}{m^2} = 0.003{m^2}\]
Hence, the correct option is C.
Note: Triangle is a two-dimensional closed geometric shape that has three sides. There are different types of the triangle and they are equilateral triangle, isosceles triangle, right-angled triangle, etc. If the sides of any triangle satisfy the Pythagoras theorem, then that triangle will be a right-angled triangle. We can use Pythagoras theorem in right-angled triangles only. A right-angled triangle is that triangle whose one of the angles is equal to \[90^\circ \].
Formula used:
We will use the formula for the area of the triangle ,\[\dfrac{1}{2} \times b \times h\] , where \[b\] is the base and \[h\]is the height of the triangle.
Complete step-by-step answer:
The given sides of a triangle are 5 cm, 12 cm and 13 cm.
We will draw the triangle using the given measurement.
We have to find the area of the triangle here, but we will first check whether the given triangle is Pythagoras or not.
We know the Pythagoras theorem states the square of the hypotenuse is equal to the sum of the squares of the other two sides of a triangle.
Therefore, applying the theorem, we get
\[ \Rightarrow {13^2} = {5^2} + {12^2}\]
Finding the squares of the numbers, we get
\[ \Rightarrow 169 = 25 + 144\]
On adding numbers, we get
\[ \Rightarrow 169 = 169\]
It is satisfying the Pythagoras theorem, thus the given triangle is a right-angled triangle.
Thus, the hypotenuse is 13 cm, base is 5 cm and height is 2 cm.
Now, we will calculate the area of this right angled triangle.
We will substitute the value of base and height of the triangle.
\[ \Rightarrow {\rm{Area}} = \dfrac{1}{2} \times 5 \times 12\]
Multiplying the numbers, we get
\[ \Rightarrow {\rm{Area}} = 30c{m^2}\]
But, we need an area in\[{m^2}\].
We know, \[1cm = \dfrac{1}{{100}}m\]
Thus, \[1c{m^2} = \dfrac{1}{{10000}}{m^2}\]
Therefore, area becomes;
\[ \Rightarrow {\rm{Area}} = 30 \times \dfrac{1}{{10000}}{m^2} = 0.003{m^2}\]
Hence, the correct option is C.
Note: Triangle is a two-dimensional closed geometric shape that has three sides. There are different types of the triangle and they are equilateral triangle, isosceles triangle, right-angled triangle, etc. If the sides of any triangle satisfy the Pythagoras theorem, then that triangle will be a right-angled triangle. We can use Pythagoras theorem in right-angled triangles only. A right-angled triangle is that triangle whose one of the angles is equal to \[90^\circ \].
Recently Updated Pages
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Which one of the following places is not covered by class 10 social science CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The only snake that builds a nest is a Krait b King class 11 biology CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Why is there a time difference of about 5 hours between class 10 social science CBSE
Which places in India experience sunrise first and class 9 social science CBSE