Answer
Verified
394.2k+ views
Hint: The Van ‘t Hoff factor for an ionic compound that is soluble in water is the ratio of the amount of discrete ions that are produced when the compound dissolves in water to the amount of substance. It is shown by the symbol $ i $ .
Complete answer:
The Van 't Hoff factor, $ i $ , is a measure of the effect of a solute on colligative properties such as osmotic pressure, relative lowering in vapor pressure, boiling-point elevation and freezing-point depression. For most non-electrolytes dissolved in water, the Van 't Hoff factor is essentially $ 1 $ . For most ionic compounds dissolved in water, the Van 't Hoff factor is equal to the number of discrete ions in a formula unit of the substance. This is true for ideal solutions only, as occasionally ion pairing occurs in solution. When solute particles neither dissociate nor associate in solution, $ i $ equals $ 1 $ .
The value of $ i $ is the actual number of particles in solution after dissociation divided by the number of formula units initially dissolved in solution and means the number of particles per formula unit of the solute when a solution is dilute.
$ {K_2}S{O_4} $ dissociates into its constituents as follows:
$ {K_2}S{O_4} \to 2{K^ + } + S{O_4}^{2 - } $
Here, the total ions produced are $ 3 $ , therefore, $ i = 3 $ .
Since, $ {K_2}S{O_4} $ completely dissociates therefore its Van ‘t Hoff factor $ = \dfrac{3}{1} = 3 $
Note:
In the actual solution of $ {K_2}S{O_4} $ in water, the value of Van ‘t Hoff factor is usually less than $ 3 $ . This happens because in dilute solution, the salts do not ionize completely. That is why the value of Van t’ Hoff factor remains less than the theoretically calculated value.
Complete answer:
The Van 't Hoff factor, $ i $ , is a measure of the effect of a solute on colligative properties such as osmotic pressure, relative lowering in vapor pressure, boiling-point elevation and freezing-point depression. For most non-electrolytes dissolved in water, the Van 't Hoff factor is essentially $ 1 $ . For most ionic compounds dissolved in water, the Van 't Hoff factor is equal to the number of discrete ions in a formula unit of the substance. This is true for ideal solutions only, as occasionally ion pairing occurs in solution. When solute particles neither dissociate nor associate in solution, $ i $ equals $ 1 $ .
The value of $ i $ is the actual number of particles in solution after dissociation divided by the number of formula units initially dissolved in solution and means the number of particles per formula unit of the solute when a solution is dilute.
$ {K_2}S{O_4} $ dissociates into its constituents as follows:
$ {K_2}S{O_4} \to 2{K^ + } + S{O_4}^{2 - } $
Here, the total ions produced are $ 3 $ , therefore, $ i = 3 $ .
Since, $ {K_2}S{O_4} $ completely dissociates therefore its Van ‘t Hoff factor $ = \dfrac{3}{1} = 3 $
Note:
In the actual solution of $ {K_2}S{O_4} $ in water, the value of Van ‘t Hoff factor is usually less than $ 3 $ . This happens because in dilute solution, the salts do not ionize completely. That is why the value of Van t’ Hoff factor remains less than the theoretically calculated value.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
What is the meaning of celestial class 10 social science CBSE
What causes groundwater depletion How can it be re class 10 chemistry CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE