Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

NCERT Exemplar for Class 11 Maths Chapter 4 - Principle of Mathematical Induction (Book Solutions)

ffImage
banner

NCERT Exemplar for Class 11 Maths - Principle of Mathematical Induction - Free PDF Download

NCERT Exemplar for Class 11 Maths Chapter 4 - Principle of Mathematical Induction (Book Solutions) by Vedantu is useful for the students as they receive proper guidance to excel in terms of their scorecard. Vedantu aims to guide students, so we have devised chapter-wise and detailed solutions for students to comprehend the logical and conceptual aspects with ease. We set the syllabus with detailed steps that explain all the problems that may pose in front of the students. Our research team ensures to follow the latest syllabus during the designing of the NCERT Exemplar solutions. They aim to frame it as per the exam pattern of the popular CBSE board. 


You can download a free PDF of NCERT Exemplar for Class 11 Maths Chapter 4 - Principle of Mathematical Induction solved by subject matter experts from Vedantu’s official website (vedantu.com) as per the latest CBSE book guidelines. All Chapter 4 - Principle of Mathematical Induction exercise questions with solutions to help you to revise the complete syllabus and score more marks in your examinations.

Competitive Exams after 12th Science
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow

Why students should opt for NCERT Exemplar for Class 11 Maths?

Prove statements in examples 1 to 5, by using the principle of mathematical induction for all \[n \in N\], that:

Example 1: $1 + 3 + 5 + ... + (2n - 1) = {n^2}$

Ans: Given that $P(n):1 + 3 + 5 + ... + (2n - 1) = {n^2}$.

Put $n = 1$

$P(1):1 = {1^2}$

$P(1):1$

So, the given statement is true for $n = 1$ and $P(1)$ is true.

Assume $P(n)$ is true for a natural number $n = k$.

$P(k):1 + 3 + 5 + ... + (2k - 1) = {k^2}$                                                                        

Now, we should prove that  $P(k + 1)$ is true.

$P(k + 1):1 + 3 + 5 + ... + (2k - 1) + (2k + 1) = {k^2} + (2k + 1)$

$P(k + 1):1 + 3 + 5 + ... + (2k - 1) + (2k + 1) = {(k + 1)^2}$

Hence, $P(k + 1)$ is true when $P(k)$ is true.

So, by the principle of mathematical induction,

$P(n):1 + 3 + 5 + ... + (2n - 1) = {n^2}$


Example 2: $\sum\limits_{t = 1}^{n - 1} {t(t + 1) = \dfrac{{n(n - 1)(n + 1)}}{3}}$, for all natural numbers \[n \geqslant 2\].

Ans: Given that $P(n):\sum\limits_{t = 1}^{n - 1} {t(t + 1) = \dfrac{{n(n - 1)(n + 1)}}{3}}$.

Put $n = 2$

\[P(2):\sum\limits_{t = 1}^{2 - 1} {t(t + 1) = \sum\limits_{t = 1}^1 {t(t + 1)} } \]

\[P(2):1.2\]

\[P(2):\dfrac{{1.2.3}}{3}\]

\[P(2):\dfrac{{2(2 - 1)(2 + 1)}}{3}\]

Hence, the given statement is true for $n = 2$ and $P(2)$ is true.

Assume $P(n)$ is true for a natural number $n = k$.

$P(k):\sum\limits_{t = 1}^{k - 1} {t(t + 1) = \dfrac{{k(k - 1)(k + 1)}}{3}}$                                                                        

Now, we should prove that  $P(k + 1)$ is true.

$P(k + 1):\sum\limits_{t = 1}^{k + 1 - 1} {t(t + 1) = } \sum\limits_{t = 1}^k {t(t + 1)}$

$P(k + 1):\sum\limits_{t = 1}^{k - 1} {t(t + 1) + k(k + 1)}$

$P(k + 1):\dfrac{{k(k - 1)(k + 1)}}{3} + k(k + 1)$

$P(k + 1):k(k + 1)\left[ {\dfrac{{k - 1 + 3}}{3}} \right]$

\[P(k + 1):\dfrac{{k(k + 1)(k + 2)}}{3}\]

\[P(k + 1):\dfrac{{(k + 1)((k + 1) - 1)((k + 1) + 1)}}{3}\]

So, $P(k + 1)$ is true when $P(k)$ is true.

So, by the principle of mathematical induction,

$P(n):\sum\limits_{t = 1}^{n - 1} {t(t + 1) = \dfrac{{n(n - 1)(n + 1)}}{3}}$ for all natural numbers$n \geqslant 2$.


Example 3: $\left( {1 - \dfrac{1}{{{2^2}}}} \right).\left( {1 - \dfrac{1}{{{3^2}}}} \right)...\left( {1 - \dfrac{1}{{{n^2}}}} \right) = \dfrac{{n + 1}}{{2n}}$, for all natural numbers \[n \geqslant 2\].

Ans: Given that $P(n):\left( {1 - \dfrac{1}{{{2^2}}}} \right).\left( {1 - \dfrac{1}{{{3^2}}}} \right)...\left( {1 - \dfrac{1}{{{n^2}}}} \right) = \dfrac{{n + 1}}{{2n}}$.

Put $n = 2$

$P(2):\left( {1 - \dfrac{1}{{{2^2}}}} \right) = \dfrac{{2 + 1}}{{2(2)}}$

$P(2):\dfrac{3}{4}$

Hence, the given statement is true for $n = 2$ and $P(2)$ is true.

Assume $P(n)$ is true for a natural number $n = k$.

$P(k):\left( {1 - \dfrac{1}{{{2^2}}}} \right).\left( {1 - \dfrac{1}{{{3^2}}}} \right)...\left( {1 - \dfrac{1}{{{k^2}}}} \right) = \dfrac{{k + 1}}{{2k}}$                                     $...(1)$                                   

Now, we should prove that  $P(k + 1)$ is true.

$P(k + 1):\left( {1 - \dfrac{1}{{{2^2}}}} \right).\left( {1 - \dfrac{1}{{{3^2}}}} \right)...\left( {1 - \dfrac{1}{{{k^2}}}} \right).\left( {1 - \dfrac{1}{{{{(k + 1)}^2}}}} \right)$

From \[\left( 1 \right)\]

$P(k + 1):\dfrac{{k + 1}}{{2k}}.\left( {1 - \dfrac{1}{{{{(k + 1)}^2}}}} \right)$

$P(k + 1):\dfrac{{{k^2} + 2k}}{{2k(k + 1)}}$

$P(k + 1):\dfrac{{(k + 1) + 1}}{{2(k + 1)}}$

Hence, $P(k + 1)$ is true when $P(k)$ is true.

So, by the principle of mathematical induction,

$P(n):\left( {1 - \dfrac{1}{{{2^2}}}} \right).\left( {1 - \dfrac{1}{{{3^2}}}} \right)...\left( {1 - \dfrac{1}{{{n^2}}}} \right) = \dfrac{{n + 1}}{{2n}}$ for all natural numbers $n \geqslant 2$.


Example 4: ${2^{2n}} - 1$ is divisible by 3.

Ans: Given that $P(n):{2^{2n}} - 1$

Put $n = 1$

$P(1):{2^2} - 1$

$P(1):3$

It is divisible by 3.

Hence, the given statement is true for $n = 1$ and $P(1)$ is true.

Assume $P(n)$ is true for a natural number $n = k$.

$P(k):{2^{2k}} - 1$ is divisible by $3$

So, ${2^{2k}} - 1 = 3q$, where $q \in N$                   $...(1)$                                                 

Now, we should prove that  $P(k + 1)$ is true.

$P(k + 1):{2^{2(k + 1)}} - 1$

$P(k + 1):{2^{2k + 2}} - 1$

$P(k + 1):{2^{2k}}{.2^2} - 1$

$P(k + 1):{2^{2k}}.4 - 1$

$P(k + 1):{3.2^{2k}} + ({2^{2k}} - 1)$

From \[\left( 1 \right)\]

$P(k + 1):{3.2^{2k}} + 3q$

$P(k + 1):3({2^{2k}} + q)$

It is divisible by 3.

Hence, $P(k + 1)$ is true when $P(k)$ is true.

So, by the principle of mathematical induction,

$P(n):{2^{2n}} - 1$ is divisible by 3.


Example 5: $2n + 1 < {2^n}$, for all natural numbers \[n \geqslant 3\].

Ans: Given that $P(n):2n + 1 < {2^n}$.

Put $n = 3$

$P(3):2(3) + 1 < {2^3}$

$P(3):7 < 8$

Hence, the given statement is true for $n = 3$ and $P(3)$ is true.

Assume $P(n)$ is true for a natural number $n = k$.

$P(k):2k + 1 < {2^k}$                                           $...(1)$                                          

Now, we should prove that  $P(k + 1)$ is true.

$P(k + 1):2(k + 1) + 1$

$P(k + 1):2k + 1 + 2$

From $(1)$

$P(k + 1):2k + 1 + 2 < {2^k} + 2$

$P(k + 1):2k + 1 + 2 < {2^k} + 2 < {2^k}.2$

$P(k + 1):2k + 3 < {2^{k + 1}}$

Hence, $P(k + 1)$ is true when $P(k)$ is true.

So, by the principle of mathematical induction,

$P(n):2n + 1 < {2^n}$ for all natural numbers $n \geqslant 3$.


Example 6: Define the sequence ${a_1},{a_2},{a_3}...$ as follows:

${a_1} = 2,{a_n} = 5{a_{n - 1}}$ , for all natural numbers \[n \geqslant 2\].

(1)Write the first four terms of the sequence.

Ans: Given that ${a_1} = 2$ and ${a_n} = 5{a_{n - 1}}$.

${a_2} = 5{a_{2 - 1}}$

${a_2} = 5{a_1}$

${a_2} = 10$

${a_3} = 5{a_{3 - 1}}$

${a_3} = 5{a_2}$

${a_3} = 50$

${a_4} = 5{a_{4 - 1}}$

${a_4} = 5{a_3}$

${a_4} = 250$


(2)Use the principle of mathematical induction to show that the terms of the sequence satisfy the formula ${a_n} = 2.{5^{n - 1}}$ for all natural numbers.

Ans: Given that ${a_1} = 2$, ${a_n} = 5{a_{n - 1}}$ and $P(n):{a_n} = {2.5^{n - 1}}$.

Put $n = 1$

$P(1):{a_1} = {2.5^{1 - 1}}$

$P(1):{a_1} = 2$

Hence, the given statement is true for $n = 1$ and $P(1)$ is true.

Assume $P(n)$ is true for a natural number $n = k$.

$P(k):{a_k} = {2.5^{k - 1}}$                                                                                     

Now, we should prove that  $P(k + 1)$ is true.

$P(k + 1):{a_{k + 1}} = 5.{a_k}$

$P(k + 1):{a_{k + 1}} = 5.({2.5^{k - 1}})$

$P(k + 1):{a_{k + 1}} = {2.5^k}$

$P(k + 1):{a_{k + 1}} = {2.5^{(k + 1) - 1}}$

Hence, $P(k + 1)$ is true when $P(k)$ is true.

So, by the principle of mathematical induction,

$P(n):{a_n} = {2.5^{n - 1}}$ for all natural numbers.


Example 7: The distributive law from algebra says that for all real numbers $c,{a_1}$ and ${a_2},$ we have $c({a_1} + {a_2}) = c{a_1} + c{a_2}$.

Use this law and mathematical induction to prove that, for all natural numbers, $n \geqslant 2,$if $c,{a_1},{a_2},...,{a_n}$ are any real numbers, then $c({a_1} + {a_2} + ... + {a_n}) = c{a_1} + c{a_2} + ... + c{a_n}$.

Ans: Given that $P(n):c({a_1} + {a_2} + ... + {a_n}) = c{a_1} + c{a_2} + ... + c{a_n}$.

Put $n = 2$

$P(2):c({a_1} + {a_2}) = c{a_1} + c{a_2}$

Hence, the given statement is true for $n = 2$ and $P(2)$ is true.

Assume $P(n)$ is true for a natural number $k,$ where $k > 2$.

$P(k):c({a_1} + {a_2} + ... + {a_k}) = c{a_1} + c{a_2} + ... + c{a_k}$                 $...(1)$                             

Now, we should prove that  $P(k + 1)$ is true.

$P(k + 1):c({a_1} + {a_2} + ... + {a_k} + {a_{k + 1}})$

$P(k + 1):c(({a_1} + {a_2} + ... + {a_k}) + {a_{k + 1}})$

$P(k + 1):c({a_1} + {a_2} + ... + {a_k}) + c{a_{k + 1}}$

From \[\left( 1 \right)\]

$P(k + 1):c{a_1} + c{a_2} + ... + c{a_k} + c{a_{k + 1}}$

Hence, $P(k + 1)$ is true when $P(k)$ is true.

So, by the principle of mathematical induction,

$c({a_1} + {a_2} + ... + {a_n}) = c{a_1} + c{a_2} + ... + c{a_n}$ for all natural numbers, $n \geqslant 2,$if $c,{a_1},{a_2},...,{a_n}$ are any real numbers.


Example 8: Prove by induction that for all natural numbers n

$sin\alpha  + sin(\alpha  + \beta ) + sin(\alpha  + 2\beta ) + ... + sin(\alpha  + (n - 1)\beta ) = \dfrac{{sin(\alpha  + \dfrac{{n - 1}}{2}\beta )sin\left( {\dfrac{{n\beta }}{2}} \right)}}{{sin\left( {\dfrac{\beta }{2}} \right)}}$

Ans: Given that $P(n):\sin \alpha  + \sin (\alpha  + \beta ) + \sin (\alpha  + 2\beta ) + ... + \sin (\alpha  + (n - 1)\beta ) = \dfrac{{\sin (\alpha  + \dfrac{{n - 1}}{2}\beta )\sin \left( {\dfrac{{n\beta }}{2}} \right)}}{{\sin \left( {\dfrac{\beta }{2}} \right)}}$

Put $n = 1$

$P(1):\sin \alpha  = \dfrac{{\sin (\alpha )\sin \left( {\dfrac{\beta }{2}} \right)}}{{\sin \left( {\dfrac{\beta }{2}} \right)}}$

Hence, the given statement is true for $n = 1$ and $P(1)$ is true.

Assume $P(n)$ is true for a natural number $k$ .

$P(k):\sin \alpha  + \sin (\alpha  + \beta ) + \sin (\alpha  + 2\beta ) + ... + \sin (\alpha  + (k - 1)\beta ) = \dfrac{{\sin (\alpha  + \dfrac{{k - 1}}{2}\beta )\sin \left( {\dfrac{{k\beta }}{2}} \right)}}{{\sin \left( {\dfrac{\beta }{2}} \right)}}{\text{    }}...(1)$               

Now, we should prove that  $P(k + 1)$ is true.

$P(k + 1):\sin \alpha  + \sin (\alpha  + \beta ) + \sin (\alpha  + 2\beta ) + ... + \sin (\alpha  + (k - 1)\beta ) + \sin (\alpha  + k\beta )$

From \[\left( 1 \right)\]

$P(k + 1):\dfrac{{\sin (\alpha  + \dfrac{{k - 1}}{2}\beta )\sin \left( {\dfrac{{k\beta }}{2}} \right)}}{{\sin \left( {\dfrac{\beta }{2}} \right)}} + \sin (\alpha  + k\beta )$

\[P(k + 1):\dfrac{{\sin (\alpha  + \dfrac{{k - 1}}{2}\beta )\sin \dfrac{{k\beta }}{2} + \sin (\alpha  + k\beta )\sin \dfrac{\beta }{2}}}{{\sin \dfrac{\beta }{2}}}\]

\[P(k + 1):\dfrac{{\cos \left( {\alpha  - \dfrac{\beta }{2}} \right) - \cos \left( {\alpha  + k\beta  - \dfrac{\beta }{2}} \right) + \cos \left( {\alpha  + k\beta  - \dfrac{\beta }{2}} \right) - \cos \left( {\alpha  + k\beta  + \dfrac{\beta }{2}} \right)}}{{2\sin \dfrac{\beta }{2}}}\]

\[P(k + 1):\dfrac{{\cos \left( {\alpha  - \dfrac{\beta }{2}} \right) - \cos \left( {\alpha  + k\beta  + \dfrac{\beta }{2}} \right)}}{{2\sin \dfrac{\beta }{2}}}\]

\[P(k + 1):\dfrac{{\sin \left( {\alpha  + \dfrac{{k\beta }}{2}} \right)\sin \left( {\dfrac{{k\beta  + \beta }}{2}} \right)}}{{\sin \dfrac{\beta }{2}}}\]

\[P(k + 1):\dfrac{{\sin \left( {\alpha  + \dfrac{{k\beta }}{2}} \right)\sin (k + 1)\left( {\dfrac{\beta }{2}} \right)}}{{\sin \dfrac{\beta }{2}}}\]

Hence, $P(k + 1)$ is true when $P(k)$ is true.

So, by the principle of mathematical induction,

$\sin \alpha  + \sin (\alpha  + \beta ) + \sin (\alpha  + 2\beta ) + ... + \sin (\alpha  + (n - 1)\beta ) = \dfrac{{\sin (\alpha  + \dfrac{{n - 1}}{2}\beta )\sin \left( {\dfrac{{n\beta }}{2}} \right)}}{{\sin \left( {\dfrac{\beta }{2}} \right)}}$  for all natural numbers $n$.


Example 9: Prove by the principle of mathematical induction that $1 \times 1! + 2 \times 2! + 3 \times 3! + ... + n \times n! = (n + 1)! - 1$ for all natural numbers n.

Ans: Given that $P(n):1 \times 1! + 2 \times 2! + 3 \times 3! + ... + n \times n! = (n + 1)! - 1$.

Put $n = 1$

$P(1):1 \times 1! = (1 + 1)! - 1$

$P(1):1$

Hence, the given statement is true for $n = 1$ and $P(1)$ is true.

Assume $P(n)$ is true for a natural number $k$. 

$P(k):1 \times 1! + 2 \times 2! + 3 \times 3! + ... + k \times k! = (k + 1)! - 1{\text{         }}...{\text{(1)}}$      

Now, we should prove that  $P(k + 1)$ is true.

$P(k + 1):1 \times 1! + 2 \times 2! + 3 \times 3! + ... + k \times k! + (k + 1) \times (k + 1)!$

From \[\left( 1 \right)\]

\[P(k + 1):(k + 1)! - 1 + (k + 1) \times (k + 1)!\]

\[P(k + 1):(k + 1 + 1)(k + 1)! - 1\]

\[P(k + 1):(k + 2)(k + 1)! - 1\]

\[P(k + 1):(k + 2)! - 1\]

Hence, $P(k + 1)$ is true when $P(k)$ is true.

So, by the principle of mathematical induction,

$P(n):1 \times 1! + 2 \times 2! + 3 \times 3! + ... + n \times n! = (n + 1)! - 1$ for all natural numbers $n$.


Example 10: Show by the principle of mathematical induction that the sum Sn of the n term of the series ${1^2} + 2 \times {2^2} + {3^2} + 2 \times {4^2} + {5^2} + 2 \times {6^2}...$ is given by

${S_n}$ = 

$\dfrac{{n{{(n + 1)}^2}}}{2},$ if n is even

$\dfrac{{{n^2}(n + 1)}}{2},$ if n is odd

Ans: Given that $P(n):{S_n}$ = 

$\dfrac{{n{{(n + 1)}^2}}}{2},{\text{ if }}n{\text{ is even}}$

  $\dfrac{{{n^2}(n + 1)}}{2},{\text{ if }}n{\text{ is odd}}$ 

We know that any term ${T_n}$ of the series is:

${T_n}$ = 

${n^2}{\text{ if }}n{\text{ is odd}}$

$2{n^2}{\text{ if }}n{\text{ is even}}$ 

Put $n = 1$

$P(1):{S_1} = {1^2}$

$P(1):{S_1} = \dfrac{{1.2}}{2}$

$P(1):{S_1} = \dfrac{{{1^2}.(1 + 1)}}{2}$

Hence, the given statement is true for $n = 1$ and $P(1)$ is true.

Assume $P(n)$ is true for a natural number $k$. 

Case 1: When $k$ is odd, then $k + 1$ is even.

$P(k + 1):{S_{k + 1}} = {1^2} + 2 \times {2^2} + ... + {k^2} + 2 \times {(k + 1)^2}$      

$P(k + 1):{S_{k + 1}} = \dfrac{{{k^2}(k + 1)}}{2} + 2 \times {(k + 1)^2}$

$P(k + 1):{S_{k + 1}} = \dfrac{{(k + 1)}}{2}[{k^2} + 4(k + 1)]$

As $k$is odd, ${1^2} + 2 \times {2^2} + ... + {k^2} = {k^2}\dfrac{{(k + 1)}}{2}$

$P(k + 1):{S_{k + 1}} = \dfrac{{k + 1}}{2}[{k^2} + 4k + 4]$

$P(k + 1):{S_{k + 1}} = \dfrac{{k + 1}}{2}{(k + 2)^2}$

\[P(k + 1):{S_{k + 1}} = (k + 1)\dfrac{{{{[(k + 1) + 1]}^2}}}{2}\]

Hence, $P(k + 1)$ is true when $P(k)$ is true in this case.

Case 2: When $k$ is even, then $k + 1$ is odd.

$P(k + 1):{1^2} + 2 \times {2^2} + ... + 2.{k^2} + {(k + 1)^2}$      

$P(k + 1):\dfrac{{k{{(k + 1)}^2}}}{2} + {(k + 1)^2}$

As $k$is even, ${1^2} + 2 \times {2^2} + ... + 2{k^2} = k\dfrac{{{{(k + 1)}^2}}}{2}$

$P(k + 1):\dfrac{{{{(k + 1)}^2}(k + 2)}}{2}$

$P(k + 1):\dfrac{{{{(k + 1)}^2}((k + 1) + 1)}}{2}$

Hence, $P(k + 1)$ is true when $P(k)$ is true in this case.

Hence, $P(k + 1)$ is true when $P(k)$ is true for any natural number $k.$

So, by the principle of mathematical induction,

$P(n)$ is true for all natural numbers.


Example 11: Let $P(n):{2^n} < (1 \times 2 \times 3 \times ... \times n)$. Then the smallest positive integer for which $P(n)$ is true is

(a) 1

(b) 2

(c) 3

(d) 4

Ans: Correct option is d. 

Given that $P(n):{2^n} < (1 \times 2 \times 3 \times ... \times n)$.

Put $n = 1$

$P(1):2 < 1$

It is false.

Put $n = 2$

$P(2):{2^2} < 1 \times 2$

$P(2):4 < 2$

It is false.

Put $n = 3$

$P(3):{2^3} < 1 \times 2 \times 3$

$P(3):8 < 6$

It is false.

Put $n = 4$

$P(4):{2^4} < 1 \times 2 \times 3 \times 4$

$P(4):16 < 24$

It is true.

Hence, the smallest positive integer for which $P(n)$ is true is $4.$


Example 12: A student was asked to prove a statement P(n) by induction. He proved that P(k+1) is true whenever P(k) is true for all $k > 5 \in N$ and also that P(5) is true. On the basis of this he could conclude that P(n) is true.

(a) for all $n \in N$

(b) for all n>5

(c) for all $n \geqslant 5$

(d) for all n<5

Ans: Correct option is c.

Given that $P(5)$ is true and $P(k + 1)$ is true whenever $P(k)$ is true.

So, $P(n)$ will be true for all $n \geqslant 5$.


Example 13: If  is divisible by $\lambda$ for all  is true, then the value of $\lambda$ is……..:

Ans: Given that $P(n):{2.4^{2n + 1}} + {3^{3n + 1}}$

Put $n = 1$

$P(1):{2.4^{2 + 1}} + {3^{3 + 1}}$

$P(1):2 \times 64 + 81$

$P(1):209$

Put $n = 2$

$P(2):{2.4^{2(2) + 1}} + {3^{3(2) + 1}}$

$P(2):2048 + 2187$

$P(2):4235$

The H.C.F. of the numbers $209$ and $4235$ is $11.$

Thus, ${2.4^{2n + 1}} + {3^{3n + 1}}$ is divisible by $11.$

Therefore, $\lambda$ is $11.$


Example 14: If  is divisible by 64 for all  is true, then the least negative integral value of $k$ is…….:

Ans: Given that $P(n):{49^n} + {16^n} + k$

Put $n = 1$

$P(1):{49^1} + {16^1} + k$

$P(1):65 + k$

As $P(n)$ is divisible by $64,$ $k$ should be $- 1.$

$\Rightarrow P(1):65 - 1 = 64$ which is divisible by $64.$

Therefore, $k$ is $- 1.$


Example 15: State whether the following proof (by mathematical induction) is true or false for the statement:

$P(n):{1^2} + {2^2} + ... + {n^2} = \dfrac{{n(n + 1)(2n + 1)}}{6}$

Ans: Given statement is false.

Given that $P(n):{1^2} + {2^2} + ... + {n^2} = \dfrac{{n(n + 1)(2n + 1)}}{6}$.

Put $n = 1$

$P(1):{1^2} = \dfrac{{1(1 + 1)(2 + 1)}}{6}$

$P(1):{1^2} = \dfrac{{(2)(3)}}{6}$

$P(1):1$

Hence, the given statement is true for $n = 1$ and $P(1)$ is true.

Assume $P(n)$ is true for a natural number $n = k$.

$P(k):{1^2} + {2^2} + ... + {k^2} = \dfrac{{k(k + 1)(2k + 1)}}{6}$                          $...(1)$                                                             

Now, we should prove that  $P(k + 1)$ is true.

$P(k + 1):{1^2} + {2^2} + ... + {k^2} + {(k + 1)^2}$

From $(1)$

$P(k + 1):\dfrac{{k(k + 1)(2k + 1)}}{6} + {(k + 1)^2}$ 

L.H.S. is not equal to the R.H.S $P(k + 1):\dfrac{{(k + 1)((k + 1) + 1)(2(k + 1) + 1)}}{6}$.

So,  $P(n)$ is false.


EXERCISE 4.1


Question 1: Give an example of a statement $P(n)$ which is true for $n \geqslant 4$ but $P(1),\;P(2)$ and $P(3)$ are not true. Justify your answer.

Ans: Let $P(n)$ be the statement $3n < n!$.

For $n = 1$

$3n = 3$

$n! = 1$

Here, $3 > 1$

So, $P(1)$ is false.

For $n = 2$

$3n = 6$

$n! = 2$

Here, $6 > 2$

So, $P(2)$ is false.

For $n = 3$

$3n = 9$

$n! = 6$

Here, $9 > 6$

So, $P(3)$ is false.

For $n = 4$

$3n = 12$

$n! = 24$

Here, $12 < 24$

So, $P(4)$ is true.

For $n = 5$

$3n = 15$

$n! = 120$

Here, $15 < 120$

So, $P(5)$ is true.

$P(n)$ can be verified that $3n < n!$ for $n = 6,7,8,....$

So, the statement $P(n):3n < n!$ is true for all $n \geqslant 4$ but $P(1),P(2)$ and $P(3)$ are false.


Question 2: Give an example of a statement $P(n)$ which is true for all n. Justify your answer.

Ans: Let $P(n)$ be the statement:

$P(n):{1^3} + {2^3} + {3^3} + ... + {n^3} = \dfrac{{{n^2}{{(n + 1)}^2}}}{4}$

For $n = 1$

${1^3} = 1$

$\dfrac{{{1^2}{{(1 + 1)}^2}}}{4} = 1$

So, $P(1)$ is true.

For $n = 2$

${1^3} + {2^3} = 9$

$\dfrac{{{2^2}{{(2 + 1)}^2}}}{4} = 9$

So, $P(2)$ is true.

For $n = 3$

${1^3} + {2^3} + {3^3} = 36$

$\dfrac{{{3^2}{{(3 + 1)}^2}}}{4} = 36$

So, $P(3)$ is true.

Therefore, $P(n):{1^3} + {2^3} + {3^3} + ... + {n^3} = \dfrac{{{n^2}{{(n + 1)}^2}}}{4}$ is true for all $n$.


Question 3: ${4^n} - 1$ is divisible by 3, for each natural number n.

Ans: We have $P(n) = {4^n} - 1$

Put $n = 1$

$P(1) = {4^1} - 1$

$P(1) = 3$ 

It is divisible by 3.

Now, take $n = 2$

$P(2) = {4^2} - 1$

$P(2) = 15$ 

It is divisible by $3$.

Now, take $n = 3$

$P(3) = {4^3} - 1$

$P(3) = 63$ 

It is divisible by $3$.

Let $P(k) = {4^k} - 1$ be divisible by 3,

$\Rightarrow {4^k} - 1 = 3x$                                   $....(1)$

And also, 

$P(k + 1) = {4^{k + 1}} - 1$

From $(1)$

$P(k + 1) = 4(3x + 1) - 1$

$P(k + 1) = 12x + 3$ is divisible by 3.

$\Rightarrow P(k + 1)$ will be true whenever $P(k)$ is true.

Therefore, $P(n) = {4^n} - 1$ is divisible by 3 is true for each natural number $n$.


Question 4: ${2^{3n}} - 1$ is divisible by 7 for all the natural numbers n.

Ans: Given that $P(n) = {2^{3n}} - 1$

Put $n = 1$

$P(1) = {2^{3(1)}} - 1$

$P(1) = 7$ 

It is divisible by $7$.

So, $P(1)$ is true.

Assume $P(m)$ is true and as it is divisible by $7$

${2^{3m}} - 1 = 7m$.

Now, we need to prove that the statement given will be true for $n = m + 1$.

$P(m + 1) = {2^{3(m + 1)}} - 1$

$P(m + 1) = {2^{3m + 3}} - 1$

$P(m + 1) = {2^{3m}}{2^3} - 1$

As ${2^{3m}} - 1 = 7m$

We get $P(m + 1) = (7m + 1){2^3} - 1$

$P(m + 1) = 56m + 8 - 1$

$P(m + 1) = 7(8m + 1)$

Hence, ${2^{3(m + 1)}} - 1$ is divisible by $7$.

$\Rightarrow P(m + 1)$ is true.

Thus, we can say that $P(n) = {2^{3n}} - 1$ is divisible by $7$ for all the natural numbers $n$.


Question 5: ${n^3} - 7n + 3$ is divisible by 3 for all the natural numbers n.

Ans: Given that $P(n) = {n^3} - 7n + 3$

Put $n = 1$

$P(1) = 1 - 7(1) + 3$

$P(1) =  - 3$ 

It is divisible by $3$.

So, given statement is valid for the value $n = 1$ 

Assume that $P(n)$ is true for a natural number $n = k$.

$P(k) = {k^3} - 7k + 3$ is divisible by $3$ or ${k^3} - 7k + 3 = 3m,m \in N$         $....(1)$

Now, $P(k + 1) = {(k + 1)^3} - 7(k + 1) + 3$

$P(k + 1) = {k^3} + 1 + 3k(k + 1) - 7k - 7 + 3$

From equation $(1)$,

$P(k + 1) = 3m + 1 + 3k(k + 1) - 7$

$P(k + 1) = 3m + 3k(k + 1) - 6$

$P(k + 1) = 3m + 3[k(k + 1) - 2]$

$P(k + 1) = 3[m + k(k + 1) - 2]$ 

It is divisible by $3$.

Hence, $P(k + 1)$ will be true whenever $P(k)$ is true.

Thus, by using principle of mathematical induction, we can say that:

${n^3} - 7n + 3$ is divisible by $3$ for all the natural numbers $n$.


Question 6: ${3^{2n}} - 1$ is divisible by 8 for all natural numbers n.

Ans: Given that $P(n) = {3^{2n}} - 1$

Put $n = 1$

$P(1):{3^2} - 1$

$P(1) = 8$ 

$P(1)$ 

It is divisible by $8$.

So, statement is true for $n = 1$ and $P(1)$ is true.

Let $P(n)$ is true for a natural number $n = k$.

$P(k) = {3^{2k}} - 1$ is divisible by $8$ or ${3^{2k}} - 1 = 8m,m \in N$                $....(1)$

Now, we should prove that  $P(k + 1)$ is true.

$P(k + 1) = {3^{2(k + 1)}} - 1$

$P(k + 1) = {3^{2k}}{3^2} - 1$

From equation $(1)$,

$P(k + 1) = (8m + 1){3^2} - 1$

$P(k + 1) = (8m + 1)9 - 1$

$P(k + 1) = 72m + 9 - 1$

$P(k + 1) = 72m + 8$ 

$P(k + 1) = 8(9m + 1)$ 

It is divisible by $8$.

$P(k + 1)$ is true whenever $P(k)$ is true.

So, by the principle of mathematical induction, we can say that:

${3^{2n}} - 1$ is divisible by $8$ for all the natural numbers $n$.


Question 7: For any natural number n ${7^n} - {2^n}$ is divisible by 5.

Ans: Given that $P(n) = {7^n} - {2^n}$

Put $n = 1$

$P(1) = {7^1} - {2^1}$

$P(1) = 5$ 

It is divisible by $5$.

The statement given is true for $n = 1$ and $P(1)$ is true.

Assume that $P(n)$ is true for a natural number $n = k$.

$P(k) = {7^k} - {2^k}$ is divisible by $5$ or ${7^k} - {2^k} = 5m,m \in N$$....(1)$

Now, we should prove that  $P(k + 1)$ is true.

$P(k + 1) = {7^{k + 1}} - {2^{k + 1}}$

$P(k + 1) = {7^k}7 - {2^k}2$

$P(k + 1) = (5 + 2){7^k} - {2^k}2$

$P(k + 1) = (5){7^k} + (2){7^k} - {2^k}2$

$P(k + 1) = (5){7^k} + 2({7^k} - {2^k})$

From $(1)$,

$P(k + 1) = (5){7^k} + 2(5m)$

$P(k + 1) = 5({7^k} + 2m)$ 

It is divisible by $5$.

Hence, $P(k + 1)$ is true whenever $P(k)$ is true.

Therefore, by the principle of mathematical induction,

${7^n} - {2^n}$ is divisible by $5$ for any natural number $n$ .


Question 8: For any natural number n, ${x^n} - {y^n}$ is divisible by $x - y$, where x and y are any integers with $x \ne y$.

Ans: Given that $P(n) = {x^n} - {y^n}$

Put $n = 1$

$P(1) = x - y$

It is divisible by $x - y$.

Hence, the statement is true for $n = 1$ and $P(1)$ is true.

Let $P(n)$ is true for the natural number $n = k$.

$P(k) = {x^k} - {y^k}$ is divisible by $x - y$ or ${x^k} - {y^k} = m(x - y),m \in N$                $....(1)$

Now, we should prove that  $P(k + 1)$ is true.

$P(k + 1) = {x^{k + 1}} - {y^{k + 1}}$

$P(k + 1) = {x^k}x - {y^k}y$

$P(k + 1) = {x^k}(y - y + x) - {y^k}y$

$P(k + 1) = {x^k}y - {x^k}y + {x^k}x - {y^k}y$

\[P(k + 1) = {x^k}(x - y) + y({x^k} - {y^k})\]

From $(1)$,

$P(k + 1) = {x^k}(x - y) + ym(x - y)$

$P(k + 1) = (x - y)({x^k} + ym)$ which is divisible by $x - y$.

So, $P(k + 1)$ is true whenever $P(k)$ is true.

So, by the principle of mathematical induction,

${x^n} - {y^n}$ is divisible by $x - y$, where $x$ and $y$ are integers such that $x \ne y$.


Question 9: ${n^3} - n$ is divisible by 6, for each natural number $n \geqslant 2$.

Ans: Given $P(n) = {n^3} - n$

Put $n = 2$

$P(2) = {2^3} - 2$

 $P(2) = 6$ 

It is divisible by $6$.

So, the statement is true for $n = 2$ and $P(2)$ is true.

Assume $P(n)$ is true for a natural number $n = k$.

$P(k) = {k^3} - k$ is divisible by $6$ or ${k^3} - k = 6m,m \in N$                $....(1)$

Now, we should prove that  $P(k + 1)$ is true.

$P(k + 1) = {(k + 1)^3} - (k + 1)$

$P(k + 1) = {k^3} + 1 + 3k(k + 1) - (k + 1)$

$P(k + 1) = {k^3} + 1 + 3{k^2} + 3k - k - 1$

$P(k + 1) = ({k^3} - k) + 3k(k + 1)$

From $(1)$,

$P(k + 1) = 6m + 3k(k + 1)$ is divisible by $6$ as $k(k + 1)$ is even.

Thus, $P(k + 1)$ is true whenever $P(k)$ is true.

Therefore, by the principle of mathematical induction, we can say that:

${n^3} - n$ is divisible by $6$ for each natural number $n \geqslant 2$.


Question 10: $n({n^2} + 5)$ is divisible by 6, for each natural number n.

Ans: We have $P(n) = n({n^2} + 5)$

Substitute $n = 1$

$P(1) = 1({1^2} + 5)$

$P(1) = 6$ which is divisible by 6.

Hence, the given statement is true for $n = 1$ and $P(1)$ is true.

Let $P(n)$ is true for some natural number $n = k$.

$P(k) = k({k^2} + 5)$ is divisible by $6$ or $k({k^2} + 5) = 6m,m \in N$                $....(1)$

Now, we have to prove that  $P(k + 1)$ is true.

$P(k + 1) = (k + 1)[{(k + 1)^2} + 5]$

$P(k + 1) = (k + 1)[({k^2} + 2k + 6]$

$P(k + 1) = {k^3} + 3{k^2} + 8k + 6$

$P(k + 1) = ({k^3} + 5k) + 3{k^2} + 3k + 6$

$P(k + 1) = k({k^2} + 5) + 3({k^2} + k + 2)$

From $(1)$,

$P(k + 1) = 6m + 3({k^2} + k + 2)$ 

Now, ${k^2} + k + 2$ is always even.

Thus, $3({k^2} + k + 2)$ is divisible by 6 and hence $6m + 3({k^2} + k + 2)$ is divisible by 6.

Hence, $P(k + 1)$ is true whenever $P(k)$ is true.

Therefore, by the principle of mathematical induction,

$n({n^2} + 5)$ is divisible by 6, for each natural number $n$.


Question 11: ${n^2} < {2^n}$ for all natural numbers $n \geqslant 5$.

Ans: Given that $P(n) = {n^2} < {2^n}$

Put $n = 5$

$P(5):{5^2} < {2^5}$

$P(5):25 < 32$

 It is true.

Hence, the given statement is true for $n = 5$ and $P(5)$ is true.

Let $P(n)$ is true for a natural number$n = k$.

$P(k) = {k^2} < {2^k}$                                                                        $....(1)$

Now, we should prove that  $P(k + 1)$ is true.

$P(k + 1):{(k + 1)^2} < {2^{(k + 1)}}$

From above,

$P(k + 1):{k^2} + 2k + 1 < {2^k} + 2k + 1$                                     $....(2)$

 Let ${2^k} + 2k + 1 < {2^{k + 1}}$                                                     $....(3)$

${2^k} + 2k + 1 < {2^k}(2)$

$2k + 1 < {2^k}$

It is true for all $k > 5$.

From $(2)$ and \[(3)\] , we get ${(k + 1)^2} < {2^{k + 1}}$.

Hence, $P(k + 1)$ is true whenever $P(k)$ is true.

Thus, by the principle of mathematical induction, we can say that:

${n^2} < {2^n}$ for all natural numbers $n \geqslant 5$.


Question 12: $2n < (n + 2)!$ for all the natural numbers n.

Ans: Given that $P(n) = 2n < (n + 2)!$

Put $n = 1$

$P(1):2 < 3!$

$P(1):2 < 6$

 It is true.

Hence, $P(1)$ is true.

Let $P(n)$ is true for a natural number $n = k$.

$P(k) = 2k < (k + 2)!$                                                                        $....(1)$

Now, we should prove that  $P(k + 1)$ is true.

$P(k + 1):2(k + 1) < (k + 1 + 2)!$

$P(k + 1):2(k + 1) < (k + 3)!$

From $(1)$,

$2(k + 1) = 2k + 2 < (k + 2)! + 2$                                                   $....(2)$

Now, let $(k + 2)! + 2 < (k + 3)!$                                                     $....(3)$

$2 < (k + 3)! - (k + 2)!$

$2 < (k + 2)![k + 2]$

It is true for any natural number.

From $(2)$ and \[(3)\] , we get $2(k + 1) < (k + 3)!$

Hence, $P(k + 1)$ is true whenever $P(k)$ is true.

So, by the principle of mathematical induction, we can say that:

$P(n)$ is true for any natural number $n$.


Question 13: $\sqrt n  < \dfrac{1}{{\sqrt 1 }} + \dfrac{1}{{\sqrt 2 }} + ... + \dfrac{1}{{\sqrt n }}$, for all natural numbers $n \geqslant 2$.

Ans: Given that $P(n) = \sqrt n  < \dfrac{1}{{\sqrt 1 }} + \dfrac{1}{{\sqrt 2 }} + ... + \dfrac{1}{{\sqrt n }}$

Put $n = 2$

$P(2):\sqrt 2  < \dfrac{1}{{\sqrt 1 }} + \dfrac{1}{{\sqrt 2 }}$ 

 $1.414 < 1.707$

It is true.

Put $n = 3$

$P(3):\sqrt 3  < \dfrac{1}{{\sqrt 1 }} + \dfrac{1}{{\sqrt 2 }} + \dfrac{1}{{\sqrt 3 }}$ 

$1.732 < 2.284$ 

It is true.

Let $P(k) = \sqrt k  < \dfrac{1}{{\sqrt 1 }} + \dfrac{1}{{\sqrt 2 }} + ... + \dfrac{1}{{\sqrt k }}$ is true.

Add $\sqrt {k + 1}  - \sqrt k $ on both sides:

\[\sqrt k  + \sqrt {k + 1}  - \sqrt k  < \dfrac{1}{{\sqrt 1 }} + \dfrac{1}{{\sqrt 2 }} + ... + \dfrac{1}{{\sqrt k }} + \sqrt {k + 1}  - \sqrt k \]

We know that $\sqrt {k + 1}  - \sqrt k  = \dfrac{{\left( {\sqrt {k + 1}  - \sqrt k } \right)\left( {\sqrt {k + 1}  + \sqrt k } \right)}}{{\left( {\sqrt {k + 1}  + \sqrt k } \right)}}$

$\Rightarrow \sqrt {k + 1}  < \dfrac{1}{{\sqrt 1 }} + \dfrac{1}{{\sqrt 2 }} + ... + \dfrac{1}{{\sqrt k }} + \dfrac{1}{{\sqrt {k + 1} }}$

Hence, $P(k + 1)$ is true whenever $P(k)$ is true.

So, by the principle of mathematical induction, we can say that:

$\sqrt n  < \dfrac{1}{{\sqrt 1 }} + \dfrac{1}{{\sqrt 2 }} + ... + \dfrac{1}{{\sqrt n }}$ for all natural numbers $n \geqslant 2$.


Question 14: $2 + 4 + 6 + ... + 2n = {n^2} + n$ for all natural numbers n.

Ans: Given that $P(n):2 + 4 + 6 + ... + 2n = {n^2} + n$

Substitute different values for $n$.

$P(0):0 = {0^2} + 0$

 It is true.

$P(1):2 = {1^2} + 1$ 

It is true.

$P(2):2 + 4 = {2^2} + 2$ 

It is true.

$P(3):2 + 4 + 6 = {3^2} + 3$

 It is true.

Let \[P(k):2 + 4 + 6 + ... + 2k = {k^2} + k\] is true.

So, \[P(k + 1):2 + 4 + 6 + ... + 2k + 2(k + 1) = {k^2} + k + 2k + 2\]

\[ \Rightarrow P(k + 1):({k^2} + 2k + 1) + (k + 1)\]

\[ \Rightarrow P(k + 1):{(k + 1)^2} + (k + 1)\]

Hence, $P(k + 1)$ is true when $P(k)$ is true.

So, by the principle of mathematical induction,

$2 + 4 + 6 + ... + 2n = {n^2} + n$ is true for all natural numbers $n$.


Question 15: $1 + 2 + {2^2} + ... + {2^n} = {2^{n + 1}} - 1$ for all natural numbers n.

Ans: Given that $P(n):1 + 2 + {2^2} + ... + {2^n} = {2^{n + 1}} - 1$

Put $n = 1$

$P(1):1 + {2^1} = {2^{1 + 1}} - 1$ 

$P(1):3$

It is true.

Assume that $P(n)$ is true for some natural number $n = k$.

\[P(k):1 + 2 + {2^2} + ... + {2^k} = {2^{k + 1}} - 1\]                                    $...(1)$

Now, we should prove that $P(k + 1)$ is true.

\[P(k + 1):1 + 2 + {2^2} + ... + {2^k} + {2^{k + 1}}\]

From $(1)$

\[ \Rightarrow P(k + 1):{2^{k + 1}} - 1 + {2^{k + 1}}\]

\[ \Rightarrow P(k + 1):(2){2^{k + 1}} - 1\]

\[ \Rightarrow P(k + 1):{2^{(k + 1) + 1}} - 1\]

Hence, $P(k + 1)$ is true when $P(k)$ is true.

So, by the principle of mathematical induction,

$1 + 2 + {2^2} + ... + {2^n} = {2^{n + 1}} - 1$ is true for all natural numbers $n$.


Question 16: $1 + 5 + 9 + ... + (4n - 3) = n(2n - 1)$ for all natural numbers n.

Ans: Given that $P(n):1 + 5 + 9 + ... + (4n - 3) = n(2n - 1)$

Put $n = 1$

$P(1):1 = 1(2 \times 1 - 1)$ 

$P(1):1$

It is true.

Assume that $P(n)$ is true for a natural number $n = k$.

\[P(k):1 + 5 + 9 + ... + (4k - 3) = k(2k - 1)\]                                    $...(1)$

Now, we should prove that $P(k + 1)$ is true.

\[P(k + 1):1 + 5 + 9 + ... + (4k - 3) + [4(k + 1) - 3]\]

From $(1)$

\[ \Rightarrow P(k + 1):2{k^2} - k + 4k + 4 - 3\]

\[ \Rightarrow P(k + 1):2{k^2} + 3k + 1\]

\[ \Rightarrow P(k + 1):(k + 1)(2k + 1)\]

\[ \Rightarrow P(k + 1):(k + 1)[2(k + 1) - 1]\]

Hence, $P(k + 1)$ is true when $P(k)$ is true.

So, by the principle of mathematical induction,

$1 + 5 + 9 + ... + (4n - 3) = n(2n - 1)$ is true for all natural numbers $n$.


Question 17: A sequence ${a_1},{a_2},{a_3}...$ is defined by letting ${a_1} = 3$ and ${a_k} = 7{a_{k - 1}}$ for all natural numbers $k \geqslant 2$. Show that ${a_n} = 3.{7^{n - 1}}$ for all natural numbers.

Ans: Given that ${a_k} = 7{a_{k - 1}}$

$\Rightarrow {a_2} = 7 \times {a_1}$

$\Rightarrow {a_2} = 7 \times 3$

$\Rightarrow {a_2} = {3.7^{2 - 1}}$

$\Rightarrow {a_3} = 7 \times {a_2}$

$\Rightarrow {a_3} = {7^2} \times {a_1}$

$\Rightarrow {a_3} = 49 \times 3$

$\Rightarrow {a_3} = {3.7^{3 - 1}}$

$\Rightarrow {a_4} = 7 \times {a_3}$

$\Rightarrow {a_4} = {7^2} \times {a_2}$

$\Rightarrow {a_4} = {7^3} \times {a_1}$

$\Rightarrow {a_4} = {3.7^{4 - 1}}$

$\Rightarrow {a_n} = 7{a_{n - 1}}$

$\Rightarrow {a_n} = {3.7^{n - 1}}$

Let ${a_m} = 7{a_{m - 1}}$

$\Rightarrow {a_m} = {3.7^{m - 1}}$ be true.

$\Rightarrow {a_{m + 1}}$ is true when ${a_m}$ is true.

So, by the principle of mathematical induction,

${a_n} = {3.7^{n - 1}}$ is true for all natural numbers $n$.


Question 18: A sequence ${b_0},{b_1},{b_2}...$ is defined by letting ${b_0} = 5$ and ${b_k} = 4 + {b_{k - 1}}$ for all natural numbers k. Show that ${b_n} = 5 + 4n$ for all natural numbers n using mathematical induction. 

Ans: Given that ${b_n} = 5 + 4n$

Put $n = 0$

${b_0} = 5$

Put $n = 1$

${b_1} = 5 + 4$ 

${b_1} = 9$

As ${b_0} = 5$

$\Rightarrow {b_1} = 4 + {b_0} = 4 + 5 = 9$

Thus, $P(1)$ is true.

Assume that $P(n)$ is true for a natural number $n = m$.

$P(m):{b_m} = 5 + 4m$                                    $...(1)$

Now, we should prove that $P(m + 1)$ is true.

\[P(m + 1):{b_{m + 1}} = 5 + 4(m + 1)\]

As ${b_k} = 4 + {b_{k - 1}}$

\[ \Rightarrow {b_{m + 1}} = 4 + {b_{m + 1 - 1}}\]

\[ \Rightarrow {b_{m + 1}} = 4 + {b_m}\]

From $(1)$

\[ \Rightarrow {b_{m + 1}} = 4 + 5 + 4m\]

\[ \Rightarrow {b_{m + 1}} = 5 + 4(m + 1)\]

Hence, $P(m + 1)$ is true when $P(m)$ is true.

So, by the principle of mathematical induction,

$P(n)$ is true for any natural number $n$.


Question 19: A sequence ${d_1},{d_2},{d_3}...$ is defined by letting ${d_1} = 2$ and ${d_k} = \dfrac{{{d_{k - 1}}}}{k}$ for all natural numbers $k \geqslant 2$. Show that ${d_n} = \dfrac{2}{{n!}}$ for all $n \in N$.

Ans: Given that ${d_n} = \dfrac{2}{{n!}}$

Put $n = 1$

$P(1):{d_1} = \dfrac{2}{{1!}}$

${d_1} = 2$

Put $n = 2$

$P(2):{d_2} = \dfrac{2}{{2!}}$

${d_2} = 1$

And ${d_k} = \dfrac{{{d_{k - 1}}}}{k}$

$\Rightarrow {d_2} = \dfrac{{{d_1}}}{2} = \dfrac{2}{2} = 1$

Thus, $P(2)$ is true.

Assume that $P(n)$ is true for a natural number $n = m$.

$P(m):{d_m} = \dfrac{2}{{m!}}$                                    $...(1)$

Now, we should prove that $P(m + 1)$ is true.

\[P(m + 1):{d_{m + 1}} = \dfrac{2}{{(m + 1)!}}\]

\[{d_{m + 1}} = \dfrac{{{d_{m + 1 - 1}}}}{{m + 1}}\]

\[{d_{m + 1}} = \dfrac{{{d_m}}}{{m + 1}}\]

From $(1)$

\[{d_{m + 1}} = \dfrac{2}{{m!(m + 1)}}\]

As we know that $n!(n + 1) = (n + 1)!$ ,

\[ \Rightarrow {d_{m + 1}} = \dfrac{2}{{(m + 1)!}}\]

Hence, $P(m + 1)$ is true whenever $P(m)$ is true.

So, by the principle of mathematical induction, 

$P(n)$ is true for any natural number $n$.


Question 20: Prove that for all 

$n \in N$$cos\alpha  + cos(\alpha  + \beta ) + cos(\alpha  + 2\beta ) + ... + cos(\alpha  + (n- 1)\beta ) = \dfrac{{cos\left( {\alpha  + \left( {\dfrac{{n - 1}}{2}} \right)\beta } \right)sin\left( {\dfrac{{n\beta }}{2}} \right)}}{{sin\dfrac{\beta }{2}}}$

Ans: Given that: $P(n):\cos \alpha  + \cos (\alpha  + \beta ) + \cos (\alpha  + 2\beta ) + ... + \cos (\alpha  + (n - 1)\beta ) = \dfrac{{\cos \left( {\alpha  + \left( {\dfrac{{n - 1}}{2}} \right)\beta } \right)\sin \left( {\dfrac{{n\beta }}{2}} \right)}}{{\sin \dfrac{\beta }{2}}}$

Put $n = 1$

$P(1):\cos \alpha  = \dfrac{{\cos \left( {\alpha  + \left( {\dfrac{{1 - 1}}{2}} \right)\beta } \right)\sin \left( {\dfrac{\beta }{2}} \right)}}{{\sin \dfrac{\beta }{2}}}$

$P(1):\dfrac{{\cos \alpha \sin \dfrac{\beta }{2}}}{{\sin \dfrac{\beta }{2}}}$

$P(1):\cos \alpha$

Hence, $P(1)$ is true.

Assume that $P(n)$ is true for a natural number $n = k$.

$P(k):\cos \alpha  + \cos (\alpha  + \beta ) + \cos (\alpha  + 2\beta ) + ... + \cos (\alpha  + (k - 1)\beta ) = \dfrac{{\cos \left( {\alpha  + \left( {\dfrac{{k - 1}}{2}} \right)\beta } \right)\sin \left( {\dfrac{{k\beta }}{2}} \right)}}{{\sin \dfrac{\beta }{2}}}{\text{   }}...(1)$Now, to prove that $P(k + 1)$ is true, we have to show that:

$P(k + 1):\cos \alpha  + \cos (\alpha  + \beta ) + \cos (\alpha  + 2\beta ) + ... + \cos (\alpha  + (k + 1 - 1)\beta ) = \dfrac{{\cos \left( {\alpha  + \left( {\dfrac{{k + 1 - 1}}{2}} \right)\beta } \right)\sin \left( {\dfrac{{(k + 1)\beta }}{2}} \right)}}{{\sin \dfrac{\beta }{2}}}$From $(1)$$\cos \alpha  + \cos (\alpha  + \beta ) + \cos (\alpha  + 2\beta ) + ... + \cos (\alpha  + (k - 1)\beta ) + \cos (\alpha  + k\beta ) = \dfrac{{\cos \left( {\alpha  + \left( {\dfrac{{k - 1}}{2}} \right)} \right)\sin \left( {\dfrac{{k\beta }}{2}} \right)}}{{\sin \dfrac{\beta }{2}}} + \cos (\alpha  + k\beta )$$P(n) = \dfrac{{\cos \left( {\alpha  + \left( {\dfrac{{k - 1}}{2}} \right)\beta } \right)\sin \left( {\dfrac{{k\beta }}{2}} \right) + \cos (\alpha  + k\beta )\sin \dfrac{\beta }{2}}}{{\sin \dfrac{\beta }{2}}}$

\[P(n) = \dfrac{{\sin \left( {\alpha  + \dfrac{{k\beta }}{2} - \dfrac{\beta }{2} + \dfrac{{k\beta }}{2}} \right) - \sin \left( {\alpha  + \dfrac{{k\beta }}{2} - \dfrac{\beta }{2} - \dfrac{{k\beta }}{2}} \right) + \sin \left( {\alpha  + k\beta  + \dfrac{\beta }{2}} \right) - \sin \left( {\alpha  + k\beta  - \dfrac{\beta }{2}} \right)}}{{2\sin \dfrac{\beta }{2}}}\]

\[P(n) = \dfrac{{\sin \left( {\alpha  + k\beta  + \dfrac{\beta }{2}} \right) - \sin \left( {\alpha  - \dfrac{\beta }{2}} \right)}}{{2\sin \dfrac{\beta }{2}}}\]

\[P(n) = \dfrac{{2\cos \dfrac{1}{2}\left( {\alpha  + k\beta  + \dfrac{\beta }{2} + \alpha  - \dfrac{\beta }{2}} \right)\sin \dfrac{1}{2}\left( {\alpha  + k\beta  + \dfrac{\beta }{2} - \alpha  + \dfrac{\beta }{2}} \right)}}{{2\sin \dfrac{\beta }{2}}}\]

\[P(n) = \dfrac{{\cos \left( {\dfrac{{2\alpha  + k\beta }}{2}} \right)\sin \left( {\dfrac{{k\beta  + \beta }}{2}} \right)}}{{\sin \dfrac{\beta }{2}}}\]

\[P(n) = \dfrac{{\cos \left( {\alpha  + \dfrac{{k\beta }}{2}} \right)\sin (k + 1)\dfrac{\beta }{2}}}{{\sin \dfrac{\beta }{2}}}\]

Hence, $P(k + 1)$ is true when $P(k)$ is true.

So, by the principle of mathematical induction,

$P(n)$ is true for any natural number $n$.


Question 21: Prove that, $cos\theta cos2\theta cos{2^2}\theta ...cos{2^{n - 1}}\theta  = \dfrac{{sin{2^n}\theta }}{{{2^n}sin\theta }}$, for all $n \in N$.

Ans: Given that $P(n):\cos \theta \cos 2\theta \cos {2^2}\theta ...\cos {2^{n - 1}}\theta  = \dfrac{{\sin {2^n}\theta }}{{{2^n}\sin \theta }}$

Put $n = 1$

$P(1):\dfrac{{\sin {2^1}\theta }}{{{2^1}\sin \theta }}$

$P(1):\dfrac{{2\sin \theta \cos \theta }}{{2\sin \theta }}$

$P(1):\cos \theta$ 

It is true.

Hence, $P(1)$ is true.

Assume that $P(n)$ is true for a natural number $n = k$.

$P(k):\cos \theta \cos 2\theta \cos {2^2}\theta ...\cos {2^{k - 1}}\theta  = \dfrac{{\sin {2^k}\theta }}{{{2^k}\sin \theta }}$                                    $...(1)$

Now, to prove that $P(k + 1)$ is true, we have to show that:

$P(k + 1):\cos \theta \cos 2\theta \cos {2^2}\theta ...\cos {2^{k - 1}}\theta \cos {2^k}\theta  = \dfrac{{\sin {2^{k + 1}}\theta }}{{{2^{k + 1}}\sin \theta }}$

From $(1)$

Now,$\cos \theta \cos 2\theta \cos {2^2}\theta ...\cos {2^{k - 1}}\theta \cos {2^k}\theta  = \dfrac{{\sin {2^k}\theta }}{{{2^k}\sin \theta }}\cos {2^k}\theta$

$P(k + 1):\dfrac{{2\sin {2^k}\theta \cos {2^k}\theta }}{{{{2.2}^k}\sin \theta }}$

$P(k + 1):\dfrac{{\sin {{2.2}^k}\theta }}{{{2^{k + 1}}\sin \theta }}$

$P(k + 1):\dfrac{{\sin {2^{(k + 1)}}\theta }}{{{2^{k + 1}}\sin \theta }}$

Hence, $P(k + 1)$ is true when $P(k)$ is true.

So, by the principle of mathematical induction,

$P(n)$ is true for any natural number $n$.


Question 22: Prove that, \[sin\theta  + sin2\theta  + sin3\theta  + ... + sinn\theta  = \dfrac{{sin\dfrac{{n\theta }}{2}sin\dfrac{{(n + 1)}}{2}\theta }}{{sin\dfrac{\theta }{2}}}\], for all $n \in N$.

Ans: Given that \[P(n):\sin \theta  + \sin 2\theta  + \sin 3\theta  + ... + \sin n\theta  = \dfrac{{\sin \dfrac{{n\theta }}{2}\sin \dfrac{{(n + 1)}}{2}\theta }}{{\sin \dfrac{\theta }{2}}}\]


Put $n = 1$

$P(1):\sin \theta  = \dfrac{{\sin \dfrac{\theta }{2}.\sin \dfrac{{(1 + 1)}}{2}\theta }}{{\sin \dfrac{\theta }{2}}}$

$P(1):\dfrac{{\sin \dfrac{\theta }{2}.\sin \theta }}{{\sin \dfrac{\theta }{2}}}$

$P(1):\sin \theta$ 

Hence, $P(1)$ is true.

Assume that $P(n)$ is true for a natural number $n = k$.

\[P(k):\sin \theta  + \sin 2\theta  + \sin 3\theta  + ... + \sin k\theta  = \dfrac{{\sin \dfrac{{k\theta }}{2}\sin \left( {\dfrac{{k + 1}}{2}} \right)\theta }}{{\sin \dfrac{\theta }{2}}}\]                                    $...(1)$

Now, to prove that $P(k + 1)$ is true, we have to show that:

\[P(k + 1):\sin \theta  + \sin 2\theta  + \sin 3\theta  + ... + \sin k\theta  + \sin (k + 1)\theta  = \dfrac{{\sin \dfrac{{(k + 1)\theta }}{2}\sin \left( {\dfrac{{k + 1 + 1}}{2}} \right)\theta }}{{\sin \dfrac{\theta }{2}}}\]

From $(1)$

 

\[P(k + 1):\sin \theta  + \sin 2\theta  + \sin 3\theta  + ... + \sin k\theta  + \sin (k + 1)\theta  = \dfrac{{\sin \dfrac{{k\theta }}{2}\sin \left( {\dfrac{{k + 1}}{2}} \right)\theta }}{{\sin \dfrac{\theta }{2}}} + \sin (k + 1)\theta \]

\[P(k + 1):\dfrac{{\sin \dfrac{{k\theta }}{2}\sin \left( {\dfrac{{k + 1}}{2}} \right)\theta  + \sin (k + 1)\theta .\sin \dfrac{\theta }{2}}}{{\sin \dfrac{\theta }{2}}}\]

\[P(k + 1):\dfrac{{\cos \left[ {\dfrac{{k\theta }}{2} - \left( {\dfrac{{k + 1}}{2}} \right)\theta } \right] - \cos \left[ {\dfrac{{k\theta }}{2} + \left( {\dfrac{{k + 1}}{2}} \right)\theta } \right] + \cos \left[ {(k + 1)\theta  - \dfrac{\theta }{2}} \right] - \cos \left[ {(k + 1)\theta  + \dfrac{\theta }{2}} \right]}}{{2\sin \dfrac{\theta }{2}}}\]

\[P(k + 1):\dfrac{{\cos \dfrac{\theta }{2} - \cos \left( {k\theta  + \dfrac{\theta }{2}} \right) + \cos \left( {k\theta  + \dfrac{\theta }{2}} \right) - \cos \left( {k\theta  + \dfrac{{3\theta }}{2}} \right)}}{{2\sin \dfrac{\theta }{2}}}\]

\[P(k + 1):\dfrac{{\cos \dfrac{\theta }{2} - \cos \left( {k\theta  + \dfrac{{3\theta }}{2}} \right)}}{{2\sin \dfrac{\theta }{2}}}\]

\[P(k + 1):\dfrac{{2\sin \dfrac{1}{2}\left( {\dfrac{\theta }{2} + k\theta  + \dfrac{{3\theta }}{2}} \right).\sin \dfrac{1}{2}\left( {k\theta  + \dfrac{{3\theta }}{2} - \dfrac{\theta }{2}} \right)}}{{2\sin \dfrac{\theta }{2}}}\]

\[P(k + 1):\dfrac{{\sin \left( {\dfrac{{k\theta  + 2\theta }}{2}} \right).\sin \left( {\dfrac{{k\theta  + \theta }}{2}} \right)}}{{\sin \dfrac{\theta }{2}}}\]

\[P(k + 1):\dfrac{{\sin (k + 1)\dfrac{\theta }{2}.\sin (k + 1 + 1)\dfrac{\theta }{2}}}{{\sin \dfrac{\theta }{2}}}\]

Hence, $P(k + 1)$ is true when $P(k)$ is true.

So, by the principle of mathematical induction,

$P(n)$ is true for any natural number $n$.


Question 23: Show that $\dfrac{{{n^5}}}{5} + \dfrac{{{n^3}}}{3} + \dfrac{{7n}}{{15}}$ is a natural number for all $n \in N$.

Ans: Given that $P(n):\dfrac{{{n^5}}}{5} + \dfrac{{{n^3}}}{3} + \dfrac{{7n}}{{15}}$

Put $n = 1$

$P(1):\dfrac{{{1^5}}}{5} + \dfrac{{{1^3}}}{3} + \dfrac{7}{{15}}$

$P(1):\dfrac{{15}}{{15}}$

$P(1):1$ 

Hence, $P(1)$ is true.

Assume that $P(n)$ is true for a natural number $n = k$.

$P(k):\dfrac{{{k^5}}}{5} + \dfrac{{{k^3}}}{3} + \dfrac{{7k}}{{15}}$ is a natural number.                                    $...(1)$

Now, we should prove that $P(k + 1)$ is true.

$P(k + 1):\dfrac{{{{(k + 1)}^5}}}{5} + \dfrac{{{{(k + 1)}^3}}}{3} + \dfrac{{7(k + 1)}}{{15}}$

$P(k + 1):\dfrac{{{k^5} + 5{k^4} + 10{k^3} + 10{k^2} + 5k + 1}}{5} + \dfrac{{{k^3} + 1 + 3{k^2} + 3k}}{3} + \dfrac{{7k + 7}}{{15}}$

$P(k + 1):\dfrac{{{k^5}}}{5} + \dfrac{{{k^3}}}{3} + \dfrac{{7k}}{{15}} + \dfrac{{5{k^4} + 10{k^3} + 10{k^2} + 5k + 1}}{5} + \dfrac{{1 + 3{k^2} + 3k}}{3} + \dfrac{7}{{15}}$

$P(k + 1):\dfrac{{{k^5}}}{5} + \dfrac{{{k^3}}}{3} + \dfrac{{7k}}{{15}} + {k^4} + 2{k^3} + 2{k^2} + k + {k^2} + k + \dfrac{1}{5} + \dfrac{1}{3} + \dfrac{7}{{15}}$

From $(1)$

$P(k + 1):\dfrac{{{k^5}}}{5} + \dfrac{{{k^3}}}{3} + \dfrac{{7k}}{{15}} + {k^4} + 2{k^3} + 3{k^2} + 2k + 1$ is a natural number.

Hence, $P(k + 1)$ is true whenever $P(k)$ is true.

So, by the principle of mathematical induction,

$P(n)$ is true for any natural number $n$.


Question 24: Prove that $\dfrac{1}{{n + 1}} + \dfrac{1}{{n + 2}} + ... + \dfrac{1}{{2n}} > \dfrac{{13}}{{24}}$ for all natural numbers n>1.

Ans: Given that $P(n):\dfrac{1}{{n + 1}} + \dfrac{1}{{n + 2}} + ... + \dfrac{1}{{2n}} > \dfrac{{13}}{{24}}$

Put $n = 2$

$P(2):\dfrac{1}{2} + \dfrac{1}{4} = \dfrac{3}{4} > \dfrac{{13}}{{24}}$ is true

$P(3):\dfrac{1}{2} + \dfrac{1}{4} + \dfrac{1}{6} = \dfrac{{11}}{{12}} > \dfrac{{13}}{{24}}$ is true

Assume that $P(n)$ is true for a natural number $n = k$.

$P(k):\dfrac{1}{{k + 1}} + \dfrac{1}{{k + 2}} + ... + \dfrac{1}{{2k}} > \dfrac{{13}}{{24}}$ 

Now, we should prove that $P(k + 1)$ is true.

$P(k + 1):\dfrac{1}{{(k + 1) + 1}} + \dfrac{1}{{(k + 1) + 2}} + ... + \dfrac{1}{{2(k + 1)}}$

$P(k + 1):\dfrac{1}{{k + 2}} + \dfrac{1}{{k + 3}} + ... + \dfrac{1}{{2k + 2}}$

$P(k + 1):\dfrac{1}{{k + 1}} + \dfrac{1}{{k + 2}} + \dfrac{1}{{k + 3}} + ... + \dfrac{1}{{2k}} + \dfrac{1}{{2k + 1}} + \dfrac{1}{{2k + 2}} - \dfrac{1}{{k + 1}}$

$P(k + 1):\dfrac{1}{{k + 1}} + \dfrac{1}{{k + 2}} + \dfrac{1}{{k + 3}} + ... + \dfrac{1}{{2k}} + \dfrac{1}{{2k + 1}} - \dfrac{1}{{2k + 2}}$

$P(k + 1):\dfrac{1}{{k + 1}} + \dfrac{1}{{k + 2}} + \dfrac{1}{{k + 3}} + ... + \dfrac{1}{{2k}} + \dfrac{1}{{(2k + 1)(2k + 2)}} > \dfrac{{13}}{{24}}$

Hence, $P(k + 1)$ is true whenever  $P(k)$ is true.

So, by the principle of mathematical induction,

$P(n)$ is true for natural numbers $n > 1$.


Question 25: Prove that number of subsets of a set containing n distinct elements is ${2^n}$, for all $n \in N$.

Ans: $P(n):$ Number of subset of a sethaving $n$ distinct elements is ${2^n}$ for all $n \in N$

Take $n = 1$,

Consider a set with one element:

 $A = \{ 1\}$

The set of subsets of the above set is \[\{ \{ 1\} ,\phi \} \] and it contains ${2^1}$ elements.

$P(1)$ is true.

Assume $P(n)$ is true for a natural number $n = k$.

$p(k):$ Number of subsets of a set having $k$ distinct elements is ${2^k}$.

We should prove that $p(k + 1)$is true. 

$p(k + 1):$ Number of subsets of a set having $(k + 1)$ distinct elements is ${2^{k + 1}}$.

The number of subsets is usually doubled whenever an element is added to the given set.

Number of subsets containing $(k + 1)$ distinct elements is: $2 \times {2^k} = {2^{k + 1}}$.

Thus, we can say that $P(k + 1)$ is true.

Therefore, the number of subsets of a set containing $n$  distinct elements is  ${2^n}$ for all  $n \in N$.


Question 26: If $1{0^n} + 3.{4^{n + 2}} + k$ is divisible by 9 for all $n \in N$, then the      least positive integer value of k is:

(a) 5

(b) 3

(c) 7

(d) 1

Ans: Option a is correct.

Given that $P(n):{10^n} + {3.4^{n + 2}} + k$

Put $n = 1$

$P(1):{10^1} + {3.4^{1 + 2}} + k$

$P(1):2012 + k$ 

As it is exactly divisible by $9$, the value of $k$ will be $5$.

So, option A is the correct answer.


Question 27: For all $n \in N$, $3.{5^{2n + 1}} + {2^{3n + 1}}$ is divisible by 

(a) 19

(b) 17

(c) 23

(d) 25

Ans: Option b is correct.

Given that $P(n):{3.5^{2n + 1}} + {2^{3n + 1}}$

Put $n = 1$

$P(1):{3.5^{2 + 1}} + {2^{3 + 1}}$

$P(1):375 + 16$

$P(1):391$

$P(1):17 \times 23$

Put $n = 2$

$P(2):{3.5^{4 + 1}} + {2^{6 + 1}}$

$P(2):9375 + 256$

$P(2):9503$

$P(2):17 \times 559$ which is divisible by $17$.

Hence, for all $n \in N$, ${3.5^{2n + 1}} + {2^{3n + 1}}$ is divisible by $17$.


Question 28: If ${x^n} - 1$ is divisible by $x - k$, then the least positive integer value of k is

(a) 1

(b) 2

(c) 3

(d) 4

Ans: Option a is correct. 

Given that $P(n):{x^n} - 1 = {\lambda _n}(x - k)$

Put $n = 1$

$P(1):x - 1 = {\lambda _1}(x - k)$

Put $n = 2$

$P(2):{x^2} - 1 = {\lambda _2}(x - k)$

$P(2):(x - 1)(x + 1) = {\lambda _2}(x - k)$

So, the least positive integral value of $k$ is $k = 1$.


Question 29: If $P(n):2n < n!,\;n \in N$ then P(n) is true for all $n \geqslant \_\_\_\_\_.$

Ans: Let $P(n):2n < n!,n \in N$

Put $n = 1$

$P(1):2 < 1$ which is false.

Put $n = 2$

$P(2):4 < 2$ which is false.

Put $n = 3$

$P(3):6 < 6$ which is false.

Put $n = 4$

$P(4):8 < 24$ which is true.

Hence, $P(n)$ is true for all $n \geqslant 4$.


Question 30: Let P(n) be a statement and let \[P(k) \Rightarrow P(k + 1)\], for some natural number k then P(n) is true for all $n \in N$.

Ans: The given statement is true.

We have $P(k) \Rightarrow P(k + 1)$

Substitute $k - 1$ in place of $k$.

$P(k - 1) \Rightarrow P(k)$

So, if $P(k)$ is true for some $n \in N$ then it is true for $(k - 1)$ and $(k + 1)$.

Hence, it is true for all $n \in N$.


Why students should opt for NCERT Exemplar for Class 11 Maths?

The solutions provided by Vedantu are set by the subject specialists who have enormous experience, and they have assembled a considerable count of model questions papers that covered each exercise from the textbook. They use all possible resources to guide students to prepare for the final examination and obtain excellent marks. Therefore, we provide everything, including previous year papers, NCERT notes, textbooks, sample papers, exemplar questions, and the list will go on. They leave no effort unaccomplished when it comes to delivering excellence to their students sitting all over the world. 

These are the few reasons that Vedantu has been able to mark its presence in multiple countries around the globe. Vedantu is happy to have a long list of satisfied students, and the list is still increasing with good numbers. So, if the students are looking ahead to gain something extra, then Vedantu is the best study platform to opt for. 

FAQs on NCERT Exemplar for Class 11 Maths Chapter 4 - Principle of Mathematical Induction (Book Solutions)

1. What are the topics covered in NCERT Exemplar for Class 11 Maths Chapter 4 - Principle of Mathematical Induction (Book Solutions)?

In NCERT Exemplar for Class 11 Maths Chapter 4 - Principle of Mathematical Induction (Book Solutions), the main topics covered are 4.1 section includes a complete introduction. And, 4.2 section consists of motivation, and the last one, 4.3, is about the mathematical induction principles. In addition, this chapter is not that big, but yes, it provides superb chances to excel your score in mathematics. So, students, don’t wait any longer to get ready to improve your scorecard in mathematics. 

2. What is the meaning of mathematical induction in NCERT Exemplar for Class 11 Maths Chapter 4?

In NCERT Exemplar for Class 11 Maths Chapter 4, the mathematical induction is defined as a devoted form that works on diverse cases as well as appears with so many ideas. Induction is a set that has been collected from particular facts. This technique is a way to explain a broad range of reports where we evaluate the authenticity of the case. This set must be numberable in terms of mathematical induction so that it can go well with an infinite set, showing that it must be owning a one-to-one resemblance between sets of positive integers and questions. 

3. Why is Vedantu the right choice for  NCERT Exemplar for Class 11 Maths Chapter 4 - Principle of Mathematical Induction (Book Solutions)?

NCERT Exemplar for Class 11 Maths Chapter 4 - Principle of Mathematical Induction (Book Solutions) PDF is free to download from Vedantu. The solutions have been built in sync with the comprehension level of each student. The notes assist students to practice all the topics regularly. Each topic in the chapter has been explained step-by-step to turn the learning easier and quicker for the students. Thus, you must have understood that Vedantu is the right choice for you. 

4. What are the prime benefits associated with downloading NCERT Exemplar for Class 11 Maths Chapter 4 - Principle of Mathematical Induction (Book Solutions) from Vedantu?

You can expect to avail of different benefits of downloading NCERT Exemplar for Class 11 Maths Chapter 4 - Principle of Mathematical Induction (Book Solutions) from Vedantu. The entire syllabus is created under the deep supervision of the certified tutors after completing research. Moreover, students receive the study material with an additional advantage to access resolving question papers from the previous years. The syllabus is set in a manner that students gain confidence in attaining success in the final results. 

5. How mathematical induction properties have been defined in NCERT Exemplar for Class 11 Maths Chapter 4 - Principle of Mathematical Induction (Book Solutions)?

In NCERT Exemplar for Class 11 Maths Chapter 4 - Principle of Mathematical Induction (Book Solutions), the mathematical induction properties have been defined in the following manner. Make sure it is necessary to act according to the properties: suppose n value is true for a statement like x ≥ 7, we need to begin to sustain the value Q(7) i.e.x=7 


If the shared statement is true x=k, further in the case, it succeeds to sustain the x=k value. Then it is going to fulfil x=k+1. Thus, to prove that the statement is true, we are supposed to prove it with x=k+1.