Answer
Verified
108.9k+ views
Hint: Equilibrium constant $Kp$ is used to express partial pressures of reactant and products. It is the ratio of the product of partial pressure of products to the product of partial pressure of reactants, each raised to their stoichiometric coefficients in the balanced equation.
Complete step by step solution:
-Sodium Ammonium Carbamate dissociates as \[N{{H}_{2}}COON{{H}_{4}}2N{{H}_{3}}+C{{O}_{2}}\]
Let initial partial pressure of Carbon dioxide be P and partial pressure of ammonia becomes 2P.
The equilibrium constant $Kp$ is used to express partial pressures of reactant and products. It is the ratio of the product of partial pressure of products to the product of partial pressure of reactants power raised to their stoichiometric coefficients in the balanced equation.
-pressure is exerted by gases so as ammonium carbamate exists in solid-state, it is not taken into account in the calculation of equilibrium constant.
\[Kp={{({{P}_{N{{H}_{3}}}})}^{2}}({{p}_{C{{O}_{2}}}})\]
\[Kp={{(2P)}^{2}}(P)\] (i)
In the second case, the initial total pressure is equal to 3P. Let us consider the partial pressure of carbon dioxide as ${{P}_{1}}$.
So equilibrium constant is equal to $Kp={{(3P)}^{2}}({{P}_{1}})$ (ii)
From both equations,
$\begin{align}
& {{(2P)}^{2}}(P)={{(3P)}^{2}}({{P}_{1}}) \\
& {{P}_{1}}=\dfrac{4P}{9} \\
\end{align}$
$\dfrac{{{P}_{T}}(new)}{{{P}_{T}}(old)}=\dfrac{3P+{{P}_{1}}}{3P}=\dfrac{3P+\dfrac{4P}{9}}{3P}=\dfrac{31}{27}$
Hence, the correct answer is (E).
Note: Equilibrium constant expresses the relationship between products and reactant when equilibrium is attained. It is the ratio of the product of partial pressure of products to the product of partial pressure of reactants, each raised to their stoichiometric coefficients in balanced equations. Solid and liquids are not taken into consideration as they do not exert pressure.
Complete step by step solution:
-Sodium Ammonium Carbamate dissociates as \[N{{H}_{2}}COON{{H}_{4}}2N{{H}_{3}}+C{{O}_{2}}\]
Let initial partial pressure of Carbon dioxide be P and partial pressure of ammonia becomes 2P.
The equilibrium constant $Kp$ is used to express partial pressures of reactant and products. It is the ratio of the product of partial pressure of products to the product of partial pressure of reactants power raised to their stoichiometric coefficients in the balanced equation.
-pressure is exerted by gases so as ammonium carbamate exists in solid-state, it is not taken into account in the calculation of equilibrium constant.
\[Kp={{({{P}_{N{{H}_{3}}}})}^{2}}({{p}_{C{{O}_{2}}}})\]
\[Kp={{(2P)}^{2}}(P)\] (i)
In the second case, the initial total pressure is equal to 3P. Let us consider the partial pressure of carbon dioxide as ${{P}_{1}}$.
So equilibrium constant is equal to $Kp={{(3P)}^{2}}({{P}_{1}})$ (ii)
From both equations,
$\begin{align}
& {{(2P)}^{2}}(P)={{(3P)}^{2}}({{P}_{1}}) \\
& {{P}_{1}}=\dfrac{4P}{9} \\
\end{align}$
$\dfrac{{{P}_{T}}(new)}{{{P}_{T}}(old)}=\dfrac{3P+{{P}_{1}}}{3P}=\dfrac{3P+\dfrac{4P}{9}}{3P}=\dfrac{31}{27}$
Hence, the correct answer is (E).
Note: Equilibrium constant expresses the relationship between products and reactant when equilibrium is attained. It is the ratio of the product of partial pressure of products to the product of partial pressure of reactants, each raised to their stoichiometric coefficients in balanced equations. Solid and liquids are not taken into consideration as they do not exert pressure.
Recently Updated Pages
If x2 hx 21 0x2 3hx + 35 0h 0 has a common root then class 10 maths JEE_Main
The radius of a sector is 12 cm and the angle is 120circ class 10 maths JEE_Main
For what value of x function fleft x right x4 4x3 + class 10 maths JEE_Main
What is the area under the curve yx+x1 betweenx0 and class 10 maths JEE_Main
The volume of a sphere is dfrac43pi r3 cubic units class 10 maths JEE_Main
Which of the following is a good conductor of electricity class 10 chemistry JEE_Main