The complex ${{[Fe{{({{H}_{2}}O)}_{3}}NO]}^{+}}$ is formed in the ring test for nitrate ion when a freshly prepared $FeS{{O}_{4}}$ solution is added to aqueous solution of $N{{O}_{3}}$ followed by addition of concentrated of ${{H}_{2}}S{{O}_{4}}$ this complex is formed by the charge transfer in which of the following:
A. $F{{e}^{2+}}$ changes to $F{{e}^{3+}}$ and $N{{O}^{+}}$ changes to NO
B. $F{{e}^{2+}}$ changes to $F{{e}^{3+}}$ and NO changes to $N{{O}^{2+}}$
C. $F{{e}^{2+}}$ changes to $F{{e}^{3+}}$ and NO changes to $N{{O}^{+}}$
D. No charge transfer takes place.
Answer
Verified
123k+ views
Hint: Redox reaction takes place here. Fe is reduced and NO is oxidised. Fe is in +1 state in the reactant and NO is neutral. The product is formed due to the charge transfer in $F{{e}^{+}}$ ion and NO.
Step by step solution: In the ring test, for nitrate ions when the freshly prepared ferrous sulphate is added to an aqueous solution of nitrate and sulphuric acid, the following reaction takes place-
$HN{{O}_{3}}+FeS{{O}_{4}}\to NO+F{{e}_{2}}{{(S{{O}_{4}})}_{3}}+H_2O$
But the complex ${{[Fe{{({{H}_{2}}O)}_{3}}NO]}^{+}}$ is formed due to the following charge transfer,
$F{{e}^{2+}}+{{e}^{\_}}\to F{{e}^{+}}$
\[\]\[NO\to N{{O}^{+}}+{{e}^{-}}\]
It is a redox reaction. $F{{e}^{2+}}$ is reduced to $F{{e}^{+}}$and NO is oxidised to $N{{O}^{+}}$. Fe is considered to be in +1 oxidation state here as observed magnetic moment suggests of 3 unpaired electrons.
However, this is not a complex formed during the ring test.
${{[Fe{{({{H}_{2}}O)}_{5}}NO]}^{2+}}$ is the complex formed in the ring test for nitrate due to the charge transfer of
\[F{{e}^{2+}}\to F{{e}^{3+}}+{{e}^{\_}}\]
\[NO\to N{{O}^{+}}+{{e}^{-}}\]
High spin Fe (III) (S=5$\div $2) antiferromagnetically coupled with N (S=1) for an observed spin of S=3$\div $2.
Therefore, [C] is the correct answer.
Additional Information: The ring test is the test to detect the presence of nitrate in the given solution. Mixed acids i.e., Sulphuric acid and Nitric acid are used here. The nitrate present in the solution forms a brown ring hence the name ring test.
Note: Here it is important to note that some books say Fe is in +3 oxidation state whereas some say it is in +1 oxidation state. However, It is widely accepted that Fe in +1 oxidation state.
Step by step solution: In the ring test, for nitrate ions when the freshly prepared ferrous sulphate is added to an aqueous solution of nitrate and sulphuric acid, the following reaction takes place-
$HN{{O}_{3}}+FeS{{O}_{4}}\to NO+F{{e}_{2}}{{(S{{O}_{4}})}_{3}}+H_2O$
But the complex ${{[Fe{{({{H}_{2}}O)}_{3}}NO]}^{+}}$ is formed due to the following charge transfer,
$F{{e}^{2+}}+{{e}^{\_}}\to F{{e}^{+}}$
\[\]\[NO\to N{{O}^{+}}+{{e}^{-}}\]
It is a redox reaction. $F{{e}^{2+}}$ is reduced to $F{{e}^{+}}$and NO is oxidised to $N{{O}^{+}}$. Fe is considered to be in +1 oxidation state here as observed magnetic moment suggests of 3 unpaired electrons.
However, this is not a complex formed during the ring test.
${{[Fe{{({{H}_{2}}O)}_{5}}NO]}^{2+}}$ is the complex formed in the ring test for nitrate due to the charge transfer of
\[F{{e}^{2+}}\to F{{e}^{3+}}+{{e}^{\_}}\]
\[NO\to N{{O}^{+}}+{{e}^{-}}\]
High spin Fe (III) (S=5$\div $2) antiferromagnetically coupled with N (S=1) for an observed spin of S=3$\div $2.
Therefore, [C] is the correct answer.
Additional Information: The ring test is the test to detect the presence of nitrate in the given solution. Mixed acids i.e., Sulphuric acid and Nitric acid are used here. The nitrate present in the solution forms a brown ring hence the name ring test.
Note: Here it is important to note that some books say Fe is in +3 oxidation state whereas some say it is in +1 oxidation state. However, It is widely accepted that Fe in +1 oxidation state.
Recently Updated Pages
The hybridization and shape of NH2 ion are a sp2 and class 11 chemistry JEE_Main
Total number of orbitals associated with the 3rd shell class 11 chemistry JEE_Main
Which of the following has the lowest boiling point class 11 chemistry JEE_Main
Which of the following compounds has zero dipole moment class 11 chemistry JEE_Main
Number of g of oxygen in 322 g Na2SO410H2O is Molwt class 11 chemistry JEE_Main
In the neutralization process of H3PO4 and NaOH the class 11 chemistry JEE_Main
Trending doubts
JEE Mains 2025: Check Important Dates, Syllabus, Exam Pattern, Fee and Updates
JEE Main Login 2045: Step-by-Step Instructions and Details
JEE Main Chemistry Question Paper with Answer Keys and Solutions
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions
JEE Main Chemistry Exam Pattern 2025
Other Pages
NCERT Solutions for Class 11 Chemistry Chapter 7 Redox Reaction
NCERT Solutions for Class 11 Chemistry Chapter 5 Thermodynamics
NCERT Solutions for Class 11 Chemistry Chapter 8 Organic Chemistry
NCERT Solutions for Class 11 Chemistry Chapter 6 Equilibrium
NCERT Solutions for Class 11 Chemistry Chapter 9 Hydrocarbons
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs