The resistance of $N/10$ solution is found to be ${\rm{2}}{\rm{.5 \times 1}}{{\rm{0}}^{\rm{3}}}{\rm{ohm}}$. The equivalent conductance of the solution is (cell constant = ${\rm{1}}{\rm{.25}}\;{\rm{c}}{{\rm{m}}^{{\rm{ - 1}}}}$)
A. ${\rm{2}}{\rm{.5}}\,{\rm{oh}}{{\rm{m}}^{ - {\rm{1}}}}{\rm{c}}{{\rm{m}}^{\rm{2}}}{\rm{equi}}{{\rm{v}}^{ - {\rm{1}}}}$
B. $K = \dfrac{1}{R} \times \dfrac{l}{a}$
C. ${\rm{2}}{\rm{.5}}\,{\rm{oh}}{{\rm{m}}^{ - {\rm{1}}}}{\rm{c}}{{\rm{m}}^ - }^{\rm{2}}{\rm{equi}}{{\rm{v}}^{ - {\rm{1}}}}$
D. ${\rm{5}}\,{\rm{oh}}{{\rm{m}}^{ - {\rm{1}}}}{\rm{c}}{{\rm{m}}^{ - {\rm{2}}}}{\rm{equi}}{{\rm{v}}^{ - {\rm{1}}}}$
Answer
Verified
122.7k+ views
Hint: The equivalent conductance of the solution is defined as the conducting power of the ions that is produced when a one-gram equivalent of the electrolyte is dissolved in the solution. The unit of equivalent conductance is ${\rm{oh}}{{\rm{m}}^{ - {\rm{1}}}}{\rm{c}}{{\rm{m}}^{\rm{2}}}{\left( {{\rm{gm}}\,{\rm{equiv}}} \right)^{ - {\rm{1}}}}$
Complete step by step answer:
Given, the resistance, $K = \dfrac{1}{R} \times \dfrac{l}{a} = 2.5 \times {10^3}$
Cell constant, $k = \dfrac{l}{a} = - 1.15{\rm{c}}{{\rm{m}}^{\rm{2}}}$
Normality, $N = 0.1N$
The relation between $R,k$and $K$ is,
$K = \dfrac{1}{R} \times \dfrac{l}{a}$
Here, $K$is the specific conductance
Now substituting the value of the specific conductance given we get,
$\begin{array}{c}K = \dfrac{1}{{2.5 \times {{10}^3}}} \times 1.15{\rm{c}}{{\rm{m}}^{ - 1}}\\ = \dfrac{{1.15}}{{2.5 \times {{10}^3}}}{\rm{oh}}{{\rm{m}}^{{\rm{ - 1}}}}{\rm{c}}{{\rm{m}}^{{\rm{ - 1}}}}\end{array}$
We know the relation between ${\Lambda _{eq}}$and $K$ is,
${\Lambda _{eq}} = \dfrac{{K \times 1000}}{N}$
Now substituting the value of $N$and $K$ we get,
$\begin{array}{c}{\Lambda _{eq}} = \dfrac{{K \times 1000}}{{2.5 \times {{10}^3} \times 0.1}} \times 1000\\ = 4.6\,oh{m^{ - 1}}c{m^2}equi{v^{ - 1}}\end{array}$
This value can be approximately taken as, $ \approx 5\,oh{m^{ - 1}}c{m^2}equi{v^{ - 1}}$
Therefore, out of the given options, B is the correct option. Options A, C and D are incorrect.
Additional information:
Molar conductivity is the power of conducting the ions which are produced when one mole of an electrolyte is dissolved in a solution. Molar conductivity is expressed as,
$\Lambda = \dfrac{k}{M}$
Here, $M$is the molar concentration.
The value of Molar conductivity is expressed by lambda $\left( \lambda \right)$. The unit of Molar conductivity is expressed as ${\rm{Sc}}{{\rm{m}}^2}{\rm{mo}}{{\rm{l}}^{ - {\rm{1}}}}$.
Note:
We use Normality for measuring the concentration of a solution. It is denoted by “N”. Normality is also described as the number of mole or gram equivalents of the solute which is present in one litre of the solution. Units of Normality is expressed as, ${\rm{eq}}\,{{\rm{L}}^{ - 1}}$ or ${\rm{meq}}\,{{\rm{L}}^{ - 1}}$.
Specific conductivity is defined as the measure of the ability of a material to conduct electricity. Specific conductivity is represented by the symbol “К”.
Equivalent conductance is the measure of the net conductance of the ions which is produced by one-gram equivalent of the given substance. The unit of equivalent conductance is ${\rm{oh}}{{\rm{m}}^{ - {\rm{1}}}}{\rm{c}}{{\rm{m}}^{\rm{2}}}{\left( {{\rm{gm}}\,{\rm{equiv}}} \right)^{ - {\rm{1}}}}$ .
Complete step by step answer:
Given, the resistance, $K = \dfrac{1}{R} \times \dfrac{l}{a} = 2.5 \times {10^3}$
Cell constant, $k = \dfrac{l}{a} = - 1.15{\rm{c}}{{\rm{m}}^{\rm{2}}}$
Normality, $N = 0.1N$
The relation between $R,k$and $K$ is,
$K = \dfrac{1}{R} \times \dfrac{l}{a}$
Here, $K$is the specific conductance
Now substituting the value of the specific conductance given we get,
$\begin{array}{c}K = \dfrac{1}{{2.5 \times {{10}^3}}} \times 1.15{\rm{c}}{{\rm{m}}^{ - 1}}\\ = \dfrac{{1.15}}{{2.5 \times {{10}^3}}}{\rm{oh}}{{\rm{m}}^{{\rm{ - 1}}}}{\rm{c}}{{\rm{m}}^{{\rm{ - 1}}}}\end{array}$
We know the relation between ${\Lambda _{eq}}$and $K$ is,
${\Lambda _{eq}} = \dfrac{{K \times 1000}}{N}$
Now substituting the value of $N$and $K$ we get,
$\begin{array}{c}{\Lambda _{eq}} = \dfrac{{K \times 1000}}{{2.5 \times {{10}^3} \times 0.1}} \times 1000\\ = 4.6\,oh{m^{ - 1}}c{m^2}equi{v^{ - 1}}\end{array}$
This value can be approximately taken as, $ \approx 5\,oh{m^{ - 1}}c{m^2}equi{v^{ - 1}}$
Therefore, out of the given options, B is the correct option. Options A, C and D are incorrect.
Additional information:
Molar conductivity is the power of conducting the ions which are produced when one mole of an electrolyte is dissolved in a solution. Molar conductivity is expressed as,
$\Lambda = \dfrac{k}{M}$
Here, $M$is the molar concentration.
The value of Molar conductivity is expressed by lambda $\left( \lambda \right)$. The unit of Molar conductivity is expressed as ${\rm{Sc}}{{\rm{m}}^2}{\rm{mo}}{{\rm{l}}^{ - {\rm{1}}}}$.
Note:
We use Normality for measuring the concentration of a solution. It is denoted by “N”. Normality is also described as the number of mole or gram equivalents of the solute which is present in one litre of the solution. Units of Normality is expressed as, ${\rm{eq}}\,{{\rm{L}}^{ - 1}}$ or ${\rm{meq}}\,{{\rm{L}}^{ - 1}}$.
Specific conductivity is defined as the measure of the ability of a material to conduct electricity. Specific conductivity is represented by the symbol “К”.
Equivalent conductance is the measure of the net conductance of the ions which is produced by one-gram equivalent of the given substance. The unit of equivalent conductance is ${\rm{oh}}{{\rm{m}}^{ - {\rm{1}}}}{\rm{c}}{{\rm{m}}^{\rm{2}}}{\left( {{\rm{gm}}\,{\rm{equiv}}} \right)^{ - {\rm{1}}}}$ .
Recently Updated Pages
The hybridization and shape of NH2 ion are a sp2 and class 11 chemistry JEE_Main
Total number of orbitals associated with the 3rd shell class 11 chemistry JEE_Main
Which of the following has the lowest boiling point class 11 chemistry JEE_Main
Which of the following compounds has zero dipole moment class 11 chemistry JEE_Main
Number of g of oxygen in 322 g Na2SO410H2O is Molwt class 11 chemistry JEE_Main
In the neutralization process of H3PO4 and NaOH the class 11 chemistry JEE_Main
Trending doubts
JEE Mains 2025: Check Important Dates, Syllabus, Exam Pattern, Fee and Updates
JEE Main Login 2045: Step-by-Step Instructions and Details
JEE Main Chemistry Question Paper with Answer Keys and Solutions
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions
JEE Main Chemistry Exam Pattern 2025
Other Pages
NCERT Solutions for Class 11 Chemistry Chapter 7 Redox Reaction
NCERT Solutions for Class 11 Chemistry Chapter 5 Thermodynamics
NCERT Solutions for Class 11 Chemistry Chapter 8 Organic Chemistry
NCERT Solutions for Class 11 Chemistry Chapter 6 Equilibrium
NCERT Solutions for Class 11 Chemistry Chapter 9 Hydrocarbons
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs