Answer
Verified
430.5k+ views
Hint: Here, we will derive the equation of Parabola in Standard form. We will construct a Parabola with the Coordinates of the focus and the Directrix. We will use the distance between two points formula to find the Distance between the Directrix and the Focus and by equating both the distance where the Directrix is Perpendicular to the \[x\]- axis and \[y\]-axis, we will find the equation of the Parabola. Thus, we will derive the equation of Parabola in the standard form.
Formula Used:
We will use the following formulas:
1. Distance between two points is given by the formula \[d = \sqrt {{{({x_2} - {x_1})}^2} + {{({y_2} - {y_1})}^2}} \] where \[({x_1},{y_1})\] and \[({x_2},{y_2})\] be the two points.
2. The square of the sum of the numbers is given by an algebraic identity \[{\left( {x + y} \right)^2} = {x^2} + {y^2} + 2xy\]
3. The square of the difference of the numbers is given by an algebraic identity \[{\left( {x - y} \right)^2} = {x^2} + {y^2} - 2xy\]
Complete Step by Step Solution:
We will find the equation of Parabola in Standard form.
Let \[F\] be the focus and \[l\] be the Directrix.
Thus, the coordinates of the Focus be\[F = \left( {a,0} \right)\] .
Thus, the equation of the Directrix is \[x = - a \Rightarrow x + a = 0\]
Now, we will draw \[FM\] perpendicular to the Directrix \[l\]. Let the distance between the Directrix and the focus \[2a\]
\[ \Rightarrow FM = 2a\]
Now, we will take the midpoint of \[FM\] as Origin \[O\].
So, we get \[\left| {OF} \right| = \left| {OM} \right| = a\]
Let \[P\left( {x,y} \right)\] be any point on the Parabola such that\[PF = PB\]
We have \[PB\] perpendicular to the Directrix\[l\] . So, we have the Coordinates of F as \[F\left( {a,0} \right)\], M as \[M\left( { - a,0} \right)\], B as \[B\left( { - a,y} \right)\] .
Distance between two points is given by the formula \[d = \sqrt {{{({x_2} - {x_1})}^2} + {{({y_2} - {y_1})}^2}} \] where \[({x_1},{y_1})\] and \[({x_2},{y_2})\] be the two points.
Now, by using the Distance formula we will find the distance between \[PF\], we get
\[ \Rightarrow PF = \sqrt {{{\left( {x - a} \right)}^2} + {{\left( {y - 0} \right)}^2}} \]
\[ \Rightarrow PF = \sqrt {{{\left( {x - a} \right)}^2} + {{\left( y \right)}^2}} \] …………………………………..\[\left( 1 \right)\]
Now, by using the Distance formula we will find the distance between\[PB\] , we get
\[ \Rightarrow PB = \sqrt {{{\left( {x - \left( { - a} \right)} \right)}^2} + {{\left( {y - y} \right)}^2}} \]
\[ \Rightarrow PB = \sqrt {{{\left( {x + a} \right)}^2}} \] ………………………………………………..\[\left( 2 \right)\]
Now, by equating the equations \[\left( 1 \right)\]and\[\left( 2 \right)\], we get
\[ \Rightarrow \sqrt {{{\left( {x - a} \right)}^2} + {y^2}} = \sqrt {{{\left( {x + a} \right)}^2}} \]
Now, taking square root on both the sides, we get
\[ \Rightarrow {\left( {x - a} \right)^2} + {y^2} = {\left( {x + a} \right)^2}\]
The square of the sum of the numbers is given by an algebraic identity \[{\left( {x + y} \right)^2} = {x^2} + {y^2} + 2xy\]
The square of the difference of the numbers is given by an algebraic identity \[{\left( {x - y} \right)^2} = {x^2} + {y^2} - 2xy\]
Now, by using an algebraic identity, we get
\[ \Rightarrow {x^2} + {a^2} - 2ax + {y^2} = {x^2} + {a^2} + 2ax\]
Now, by cancelling out the terms, we get
\[ \Rightarrow {y^2} = 2ax + 2ax\]
\[ \Rightarrow {y^2} = 4ax\]
Therefore, the equation of Parabola is \[{y^2} = 4ax\] in standard form.
Note:
We know that the Latus rectum of a parabola is a line segment perpendicular to the axis of the parabola, through the focus and whose endpoints lie on the parabola. The Directrix of Parabola is perpendicular to the axis of symmetry and the Directrix does not touch the Parabola. A parabola is symmetric with its axis. If the equation has a \[{y^2}\] term, then the axis of symmetry is along the x-axis and if the equation has an \[{x^2}\] term, then the axis of symmetry is along the y-axis. So, the given equation of Parabola is open rightwards.
Formula Used:
We will use the following formulas:
1. Distance between two points is given by the formula \[d = \sqrt {{{({x_2} - {x_1})}^2} + {{({y_2} - {y_1})}^2}} \] where \[({x_1},{y_1})\] and \[({x_2},{y_2})\] be the two points.
2. The square of the sum of the numbers is given by an algebraic identity \[{\left( {x + y} \right)^2} = {x^2} + {y^2} + 2xy\]
3. The square of the difference of the numbers is given by an algebraic identity \[{\left( {x - y} \right)^2} = {x^2} + {y^2} - 2xy\]
Complete Step by Step Solution:
We will find the equation of Parabola in Standard form.
Let \[F\] be the focus and \[l\] be the Directrix.
Thus, the coordinates of the Focus be\[F = \left( {a,0} \right)\] .
Thus, the equation of the Directrix is \[x = - a \Rightarrow x + a = 0\]
Now, we will draw \[FM\] perpendicular to the Directrix \[l\]. Let the distance between the Directrix and the focus \[2a\]
\[ \Rightarrow FM = 2a\]
Now, we will take the midpoint of \[FM\] as Origin \[O\].
So, we get \[\left| {OF} \right| = \left| {OM} \right| = a\]
Let \[P\left( {x,y} \right)\] be any point on the Parabola such that\[PF = PB\]
We have \[PB\] perpendicular to the Directrix\[l\] . So, we have the Coordinates of F as \[F\left( {a,0} \right)\], M as \[M\left( { - a,0} \right)\], B as \[B\left( { - a,y} \right)\] .
Distance between two points is given by the formula \[d = \sqrt {{{({x_2} - {x_1})}^2} + {{({y_2} - {y_1})}^2}} \] where \[({x_1},{y_1})\] and \[({x_2},{y_2})\] be the two points.
Now, by using the Distance formula we will find the distance between \[PF\], we get
\[ \Rightarrow PF = \sqrt {{{\left( {x - a} \right)}^2} + {{\left( {y - 0} \right)}^2}} \]
\[ \Rightarrow PF = \sqrt {{{\left( {x - a} \right)}^2} + {{\left( y \right)}^2}} \] …………………………………..\[\left( 1 \right)\]
Now, by using the Distance formula we will find the distance between\[PB\] , we get
\[ \Rightarrow PB = \sqrt {{{\left( {x - \left( { - a} \right)} \right)}^2} + {{\left( {y - y} \right)}^2}} \]
\[ \Rightarrow PB = \sqrt {{{\left( {x + a} \right)}^2}} \] ………………………………………………..\[\left( 2 \right)\]
Now, by equating the equations \[\left( 1 \right)\]and\[\left( 2 \right)\], we get
\[ \Rightarrow \sqrt {{{\left( {x - a} \right)}^2} + {y^2}} = \sqrt {{{\left( {x + a} \right)}^2}} \]
Now, taking square root on both the sides, we get
\[ \Rightarrow {\left( {x - a} \right)^2} + {y^2} = {\left( {x + a} \right)^2}\]
The square of the sum of the numbers is given by an algebraic identity \[{\left( {x + y} \right)^2} = {x^2} + {y^2} + 2xy\]
The square of the difference of the numbers is given by an algebraic identity \[{\left( {x - y} \right)^2} = {x^2} + {y^2} - 2xy\]
Now, by using an algebraic identity, we get
\[ \Rightarrow {x^2} + {a^2} - 2ax + {y^2} = {x^2} + {a^2} + 2ax\]
Now, by cancelling out the terms, we get
\[ \Rightarrow {y^2} = 2ax + 2ax\]
\[ \Rightarrow {y^2} = 4ax\]
Therefore, the equation of Parabola is \[{y^2} = 4ax\] in standard form.
Note:
We know that the Latus rectum of a parabola is a line segment perpendicular to the axis of the parabola, through the focus and whose endpoints lie on the parabola. The Directrix of Parabola is perpendicular to the axis of symmetry and the Directrix does not touch the Parabola. A parabola is symmetric with its axis. If the equation has a \[{y^2}\] term, then the axis of symmetry is along the x-axis and if the equation has an \[{x^2}\] term, then the axis of symmetry is along the y-axis. So, the given equation of Parabola is open rightwards.
Recently Updated Pages
Use the comparative degree of comparison in the following class 10 english CBSE
Nuclear Power station in Rajasthan is situated at a class 10 social science CBSE
Read the following telephone conversation which took class 10 english CBSE
What steps were taken by Robespierres government especially class 10 social science CBSE
Choose the sentence with the correct punctuation marks class 10 english CBSE
Use the comparative form in the following sentence class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
Which is the longest day and shortest night in the class 11 sst CBSE
What is the definite integral of zero a constant b class 12 maths CBSE
Name five important trees found in the tropical evergreen class 10 social studies CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE