Answer
Verified
397.8k+ views
Hint: The area of the annulus, we will use: \[\pi \left( {{R^2} - {r^2}} \right)\]where the outer radii is the R and the inner radii is the ‘r’ to find the required area. The value of the inner and the outer radii we will substitute and then simplify it to get the required answer.
Complete step-by-step solution:
We have to find the area of the annulus whose inner and outer radii are 6cm and 8cm. The area of the annulus, we know is \[\pi \left( {{R^2} - {r^2}} \right)\], where the r is the outer radii and ‘r’ is the inner radii.
In the above formula, we will substitute the values of inner radii and outer radii.
\[A= \pi \left( {\left(8^2\right)}-{\left(6^2\right)} \right)\]
By using the formula we will simplify the above expression,
$ {a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right) $
$\Rightarrow A=\pi \left( {8 + 6} \right)\left( {8 - 6} \right) = \pi \left( {14} \right)\left( 2 \right)$
$\Rightarrow A= \pi \left( {14} \right)\left( 2 \right) $
On substituting the value of the \[\pi = \dfrac{{22}}{7}\] in the above expression, we will get,
$\Rightarrow A= \dfrac{{22}}{7}\left( {14} \right)\left( 2 \right)$
$\Rightarrow A= 22\left( 4 \right) $
$\Rightarrow A= 88c{m^2} $
Hence, the area of the annulus is \[88c{m^2}\].
Note: By finding the area of the outer circle and the inner circle, we can also do this question, and then we can subtract the area of the inner circle from the area of the outer circle. Between the two circles, the annulus is the part. Also the area of any shape is measured in square units.
Complete step-by-step solution:
We have to find the area of the annulus whose inner and outer radii are 6cm and 8cm. The area of the annulus, we know is \[\pi \left( {{R^2} - {r^2}} \right)\], where the r is the outer radii and ‘r’ is the inner radii.
In the above formula, we will substitute the values of inner radii and outer radii.
\[A= \pi \left( {\left(8^2\right)}-{\left(6^2\right)} \right)\]
By using the formula we will simplify the above expression,
$ {a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right) $
$\Rightarrow A=\pi \left( {8 + 6} \right)\left( {8 - 6} \right) = \pi \left( {14} \right)\left( 2 \right)$
$\Rightarrow A= \pi \left( {14} \right)\left( 2 \right) $
On substituting the value of the \[\pi = \dfrac{{22}}{7}\] in the above expression, we will get,
$\Rightarrow A= \dfrac{{22}}{7}\left( {14} \right)\left( 2 \right)$
$\Rightarrow A= 22\left( 4 \right) $
$\Rightarrow A= 88c{m^2} $
Hence, the area of the annulus is \[88c{m^2}\].
Note: By finding the area of the outer circle and the inner circle, we can also do this question, and then we can subtract the area of the inner circle from the area of the outer circle. Between the two circles, the annulus is the part. Also the area of any shape is measured in square units.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE