Answer
Verified
468.9k+ views
Hint: To solve this question we first of all should know what is a polynomial, it is an expression of more than 2 algebraic terms of various powers. Here we have to substitute, x = 0 in the given polynomial \[4{{x}^{2}}-5x+3\] to get the result.
Complete step-by-step answer:
A polynomial k is an expression of more than two algebraic terms, especially the sum of several terms that contain different powers of the same variable.
We are given the polynomial as \[4{{x}^{2}}-5x+3\]. Here we have ‘x’ is the variable of the given polynomial.
We substitute different values to the value to get the value of the polynomial corresponding to that variable value.
Here we have to find the value of possibility \[4{{x}^{2}}-5x+3\] by substituting x = 0 in it.
Let value of polynomial be t,
Then \[t=4{{x}^{2}}-5x+3\].
Substituting x = 0 in above expression we get,
\[\begin{align}
& t=4\times 0-5\times 0+3 \\
& \Rightarrow t=0-0+3 \\
& \Rightarrow t=3 \\
\end{align}\]
Therefore the value of the polynomial \[4{{x}^{2}}-5x+3\] at x = 0 is 3, which is option (c).
So, the correct answer is “Option C”.
Note: If any polynomial has x as denominator of any of terms of it, then x = 0 would give undetermined form and then they are called rational functions. For example if polynomial is of the type \[p\left( x \right)=2x+\dfrac{3}{x}+1\], is rational function and not really a polynomial as it has negative powers of x and it can give undetermined form at some values of x.
Complete step-by-step answer:
A polynomial k is an expression of more than two algebraic terms, especially the sum of several terms that contain different powers of the same variable.
We are given the polynomial as \[4{{x}^{2}}-5x+3\]. Here we have ‘x’ is the variable of the given polynomial.
We substitute different values to the value to get the value of the polynomial corresponding to that variable value.
Here we have to find the value of possibility \[4{{x}^{2}}-5x+3\] by substituting x = 0 in it.
Let value of polynomial be t,
Then \[t=4{{x}^{2}}-5x+3\].
Substituting x = 0 in above expression we get,
\[\begin{align}
& t=4\times 0-5\times 0+3 \\
& \Rightarrow t=0-0+3 \\
& \Rightarrow t=3 \\
\end{align}\]
Therefore the value of the polynomial \[4{{x}^{2}}-5x+3\] at x = 0 is 3, which is option (c).
So, the correct answer is “Option C”.
Note: If any polynomial has x as denominator of any of terms of it, then x = 0 would give undetermined form and then they are called rational functions. For example if polynomial is of the type \[p\left( x \right)=2x+\dfrac{3}{x}+1\], is rational function and not really a polynomial as it has negative powers of x and it can give undetermined form at some values of x.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers