Following is arranged in ascending order. If the median of the data is $63$ , find the volume of $x$ in a series $29,32,48,50,x,x + 2,72,78,84,95$
$\left( a \right){\text{ 60}}$
$\left( b \right){\text{ 62}}$
$\left( c \right){\text{ 63}}$
$\left( d \right){\text{ 64}}$
Answer
Verified
455.1k+ views
Hint: So for solving this very question, we will use the concept of the median. The formula we will use in this question is of median and it is given by $\dfrac{{{{\left( {\dfrac{n}{2}} \right)}^{th}}observation + {{\left( {\dfrac{n}{2} + 1} \right)}^{th}}observation}}{2}$ . and by equating it with the value of median we will get the value of $x$ .
Formula used:
Median is given by,
$Median = \dfrac{{{{\left( {\dfrac{n}{2}} \right)}^{th}}observation + {{\left( {\dfrac{n}{2} + 1} \right)}^{th}}observation}}{2}$
Here, $n$ will be the number of terms in the observations.
Complete step-by-step answer:
So we have an observation which is in ascending order is given as $29,32,48,50,x,x + 2,72,78,84,95$ . Also, we have the value of the median given as $63$ .
Since the number of observations in this question is $n = 10$ and is an even number.
Therefore, by using the median formula given by
$Median = \dfrac{{{{\left( {\dfrac{n}{2}} \right)}^{th}}observation + {{\left( {\dfrac{n}{2} + 1} \right)}^{th}}observation}}{2}$
On substituting the values, we get
$ \Rightarrow 63 = \dfrac{{{{\left( {\dfrac{{10}}{2}} \right)}^{th}}observation + {{\left( {\dfrac{{10}}{2} + 1} \right)}^{th}}observation}}{2}$
And on solving the numerator braces, we get the equation as
$ \Rightarrow 63 = \dfrac{{{{\left( 5 \right)}^{th}}observation + {{\left( 6 \right)}^{th}}observation}}{2}$
As we can see the values from the observation at the above place, so on substituting the values, we get the equation as
$ \Rightarrow 63 = \dfrac{{x + \left( {x + 2} \right)}}{2}$
By doing the cross-multiplication, we get
$ \Rightarrow 63 \times 2 = 2x + 2$
Taking the constant term one side and solving for it, we get the equation as
$ \Rightarrow 126 - 2 = 2x$
And on solving the subtraction, we get
$ \Rightarrow 124 = 2x$
And solving for the value of $x$ , we get
$ \Rightarrow x = 62$
Hence, the option $\left( b \right)$ is correct.
Note: So just like the median we can also calculate the mean of the observation. And is defined as Mean (or arithmetic mean) is a type of average. It is processed by adding the qualities and partitioning by the number of qualities. The word 'Average' is an equivalent for the number-crunching mean - which is the value gotten by partitioning the sum of a bunch of amounts by the quantity having the number in the set.
Formula used:
Median is given by,
$Median = \dfrac{{{{\left( {\dfrac{n}{2}} \right)}^{th}}observation + {{\left( {\dfrac{n}{2} + 1} \right)}^{th}}observation}}{2}$
Here, $n$ will be the number of terms in the observations.
Complete step-by-step answer:
So we have an observation which is in ascending order is given as $29,32,48,50,x,x + 2,72,78,84,95$ . Also, we have the value of the median given as $63$ .
Since the number of observations in this question is $n = 10$ and is an even number.
Therefore, by using the median formula given by
$Median = \dfrac{{{{\left( {\dfrac{n}{2}} \right)}^{th}}observation + {{\left( {\dfrac{n}{2} + 1} \right)}^{th}}observation}}{2}$
On substituting the values, we get
$ \Rightarrow 63 = \dfrac{{{{\left( {\dfrac{{10}}{2}} \right)}^{th}}observation + {{\left( {\dfrac{{10}}{2} + 1} \right)}^{th}}observation}}{2}$
And on solving the numerator braces, we get the equation as
$ \Rightarrow 63 = \dfrac{{{{\left( 5 \right)}^{th}}observation + {{\left( 6 \right)}^{th}}observation}}{2}$
As we can see the values from the observation at the above place, so on substituting the values, we get the equation as
$ \Rightarrow 63 = \dfrac{{x + \left( {x + 2} \right)}}{2}$
By doing the cross-multiplication, we get
$ \Rightarrow 63 \times 2 = 2x + 2$
Taking the constant term one side and solving for it, we get the equation as
$ \Rightarrow 126 - 2 = 2x$
And on solving the subtraction, we get
$ \Rightarrow 124 = 2x$
And solving for the value of $x$ , we get
$ \Rightarrow x = 62$
Hence, the option $\left( b \right)$ is correct.
Note: So just like the median we can also calculate the mean of the observation. And is defined as Mean (or arithmetic mean) is a type of average. It is processed by adding the qualities and partitioning by the number of qualities. The word 'Average' is an equivalent for the number-crunching mean - which is the value gotten by partitioning the sum of a bunch of amounts by the quantity having the number in the set.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Difference Between Plant Cell and Animal Cell
What is pollution? How many types of pollution? Define it
What is the color of ferrous sulphate crystals? How does this color change after heating? Name the products formed on strongly heating ferrous sulphate crystals. What type of chemical reaction occurs in this type of change.