Answer
Verified
449.4k+ views
Hint: We solve this problem by using the standard result that is the number of terms in the expansion of \[{{\left( A+\dfrac{B}{x}+\dfrac{C}{{{x}^{2}}} \right)}^{n}}\] is given as \[2n+1\] then we find the value of \['n'\]
After that we find the power of 5 that includes in \[n!\] which means the largest power of 5 such that \[n!\] is divisible by \[{{5}^{p-1}}\] to get the value of ‘p’.
Complete step by step answer:
We are given that the expansion of \[{{\left( 1+{{x}^{-1}}+{{x}^{-2}} \right)}^{n}}\] has 53 terms.
We know that the number of terms in the expansion of \[{{\left( A+\dfrac{B}{x}+\dfrac{C}{{{x}^{2}}} \right)}^{n}}\] is given as \[2n+1\]
By using the above result to given condition we get
\[\begin{align}
& \Rightarrow 2n+1=53 \\
& \Rightarrow n=26 \\
\end{align}\]
Now, let us find the multiples of 5 that are involved in \[26!\]
We know that
\[n!=1\times 2\times 3\times 4..........\times n\]
By using the above formula we get
\[\Rightarrow 26!=1\times 2\times 3\times .........\times 26\]
Now, let us write the 5 multiples separately then we get
\[\Rightarrow 26!=\left( 5\times 10\times 15\times 20\times 25 \right)\times k\]
Here, we can assume that the remaining product as \['k'\]
Now let us write the above equation in the power of 5 then we get
\[\Rightarrow 26!={{5}^{6}}\left( p \right)\]
Here, we can assume that the remaining product as \['p'\]
Now, we can see that the highest power of 5 that divides \[26!\] exactly is \[{{5}^{6}}\]
We are given that \[n!\] is divisible by \[{{5}^{p-1}}\] where \[n=26\]
Now, by comparing the given statement with the result we get
\[\begin{align}
& \Rightarrow {{5}^{p-1}}={{5}^{6}} \\
& \Rightarrow p-1=6 \\
& \Rightarrow p=7 \\
\end{align}\]
Therefore the largest prime number ‘p’ such that \[n!\] is divisible by \[{{5}^{p-1}}\] is 7
So, the correct answer is “Option c”.
Note: Students may make mistakes in taking the formula of number of terms of expansion.
The number of terms in the expansion of \[{{\left( A+\dfrac{B}{x}+\dfrac{C}{{{x}^{2}}} \right)}^{n}}\] is given as \[2n+1\]
We also have other formula that is
The number of terms in the expansion of \[{{\left( A+B+C \right)}^{n}}\] is given as \[\left( n+1 \right)\left( n+2 \right)\]
Students may get confused between these two formulas and get the wrong answer.
After that we find the power of 5 that includes in \[n!\] which means the largest power of 5 such that \[n!\] is divisible by \[{{5}^{p-1}}\] to get the value of ‘p’.
Complete step by step answer:
We are given that the expansion of \[{{\left( 1+{{x}^{-1}}+{{x}^{-2}} \right)}^{n}}\] has 53 terms.
We know that the number of terms in the expansion of \[{{\left( A+\dfrac{B}{x}+\dfrac{C}{{{x}^{2}}} \right)}^{n}}\] is given as \[2n+1\]
By using the above result to given condition we get
\[\begin{align}
& \Rightarrow 2n+1=53 \\
& \Rightarrow n=26 \\
\end{align}\]
Now, let us find the multiples of 5 that are involved in \[26!\]
We know that
\[n!=1\times 2\times 3\times 4..........\times n\]
By using the above formula we get
\[\Rightarrow 26!=1\times 2\times 3\times .........\times 26\]
Now, let us write the 5 multiples separately then we get
\[\Rightarrow 26!=\left( 5\times 10\times 15\times 20\times 25 \right)\times k\]
Here, we can assume that the remaining product as \['k'\]
Now let us write the above equation in the power of 5 then we get
\[\Rightarrow 26!={{5}^{6}}\left( p \right)\]
Here, we can assume that the remaining product as \['p'\]
Now, we can see that the highest power of 5 that divides \[26!\] exactly is \[{{5}^{6}}\]
We are given that \[n!\] is divisible by \[{{5}^{p-1}}\] where \[n=26\]
Now, by comparing the given statement with the result we get
\[\begin{align}
& \Rightarrow {{5}^{p-1}}={{5}^{6}} \\
& \Rightarrow p-1=6 \\
& \Rightarrow p=7 \\
\end{align}\]
Therefore the largest prime number ‘p’ such that \[n!\] is divisible by \[{{5}^{p-1}}\] is 7
So, the correct answer is “Option c”.
Note: Students may make mistakes in taking the formula of number of terms of expansion.
The number of terms in the expansion of \[{{\left( A+\dfrac{B}{x}+\dfrac{C}{{{x}^{2}}} \right)}^{n}}\] is given as \[2n+1\]
We also have other formula that is
The number of terms in the expansion of \[{{\left( A+B+C \right)}^{n}}\] is given as \[\left( n+1 \right)\left( n+2 \right)\]
Students may get confused between these two formulas and get the wrong answer.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE