In a triangle ABC, $a = 7,b = 8,c = 9$, BD is the median and BE is the altitude from the vertex B, then
List – I List – II BD 7 BE 2 BD $\sqrt {35} $ $\sqrt {45} $
The correct match for LIST – I from LIST – II
1) A – 2, B – 1, C – 4
2) A – 3, B – 4, C – 2
3) A – 1, B – 3, C – 2
4) A – 1, B – 4, C – 2
List – I | List – II |
BD | 7 |
BE | 2 |
BD | $\sqrt {35} $ |
$\sqrt {45} $ |
Answer
Verified
463.2k+ views
Hint: First draw the diagram based on the question. Then, use the cosine formula in $\Delta ABC$ and $\Delta ABD$ and compare the values to get the value of BD. After that use the properties of the isosceles triangle to get the value of ED. Then use the Pythagoras theorem in $\Delta BED$ to get the value of BE.
Complete step-by-step solution:
The diagram of the above equation is,
In $\Delta ABC$, the cosine formula for A is given by,
$\cos A = \dfrac{{{b^2} + {c^2} - {a^2}}}{{2bc}}$
Substitute the values,
$ \Rightarrow \cos A = \dfrac{{{8^2} + {9^2} - {7^2}}}{{2 \times 8 \times 9}}$
Simplify the terms,
$ \Rightarrow \cos A = \dfrac{{64 + 81 - 49}}{{144}}$
Add and subtract the terms in the numerator,
$ \Rightarrow \cos A = \dfrac{{96}}{{144}}$
Cancel out the common terms,
$ \Rightarrow \cos A = \dfrac{2}{3}$.............….. (1)
In $\Delta ABD$, the cosine formula for A is given by,
$\cos A = \dfrac{{A{B^2} + A{D^2} - B{D^2}}}{{2 \times AB \times AD}}$
Substitute the values,
$ \Rightarrow \cos A = \dfrac{{{9^2} + {4^2} - B{D^2}}}{{2 \times 9 \times 4}}$
Simplify the terms,
$ \Rightarrow \cos A = \dfrac{{81 + 16 - B{D^2}}}{{72}}$
Add and subtract the terms in the numerator,
$ \Rightarrow \cos A = \dfrac{{97 - B{D^2}}}{{72}}$................….. (2)
Compare the equation (1) and (2),
$ \Rightarrow \dfrac{{97 - B{D^2}}}{{72}} = \dfrac{2}{3}$
Cross-multiply the terms,
$ \Rightarrow 291 - 3B{D^2} = 144$
Move constant part on one side,
$ \Rightarrow 3B{D^2} = 291 - 144$
Subtract the values,
$ \Rightarrow 3B{D^2} = 147$
Divide both sides by 3,
$ \Rightarrow B{D^2} = 49$
Take the square root on both sides,
$\therefore BD = 7$
In $\Delta BCD$, $BC = 7$ and $BD = 7$.
So, $\Delta BCD$ is an isosceles triangle.
We know that the altitude on the non-equal side of the isosceles triangle is the perpendicular bisector. So,
$ \Rightarrow CE = ED$...................….. (3)
The length of the CD is 4. Then,
$ \Rightarrow CE + ED = 4$
Substitute the value from equation (3),
$ \Rightarrow ED + ED = 4$
Add the terms,
$ \Rightarrow 2ED = 4$
Divide both sides by 2,
$\therefore ED = 2$
In $\Delta BED$, apply Pythagoras theorem,
$B{E^2} = B{D^2} - E{D^2}$
Substitute the values,
$ \Rightarrow B{E^2} = {7^2} - {2^2}$
Simplify the terms,
$ \Rightarrow B{E^2} = 49 - 4$
Subtract the values,
$ \Rightarrow B{E^2} = 45$
Take the square root on both sides,
$\therefore BE = \sqrt {45} $
Hence, option (4) is correct.
Note: A line segment drawn from the vertex of a triangle on the opposite side of a triangle which is perpendicular to it is said to be the altitude of a triangle.
A median of a triangle is a line segment joining a vertex to the midpoint of the opposite side, thus bisecting that side.
Complete step-by-step solution:
The diagram of the above equation is,
In $\Delta ABC$, the cosine formula for A is given by,
$\cos A = \dfrac{{{b^2} + {c^2} - {a^2}}}{{2bc}}$
Substitute the values,
$ \Rightarrow \cos A = \dfrac{{{8^2} + {9^2} - {7^2}}}{{2 \times 8 \times 9}}$
Simplify the terms,
$ \Rightarrow \cos A = \dfrac{{64 + 81 - 49}}{{144}}$
Add and subtract the terms in the numerator,
$ \Rightarrow \cos A = \dfrac{{96}}{{144}}$
Cancel out the common terms,
$ \Rightarrow \cos A = \dfrac{2}{3}$.............….. (1)
In $\Delta ABD$, the cosine formula for A is given by,
$\cos A = \dfrac{{A{B^2} + A{D^2} - B{D^2}}}{{2 \times AB \times AD}}$
Substitute the values,
$ \Rightarrow \cos A = \dfrac{{{9^2} + {4^2} - B{D^2}}}{{2 \times 9 \times 4}}$
Simplify the terms,
$ \Rightarrow \cos A = \dfrac{{81 + 16 - B{D^2}}}{{72}}$
Add and subtract the terms in the numerator,
$ \Rightarrow \cos A = \dfrac{{97 - B{D^2}}}{{72}}$................….. (2)
Compare the equation (1) and (2),
$ \Rightarrow \dfrac{{97 - B{D^2}}}{{72}} = \dfrac{2}{3}$
Cross-multiply the terms,
$ \Rightarrow 291 - 3B{D^2} = 144$
Move constant part on one side,
$ \Rightarrow 3B{D^2} = 291 - 144$
Subtract the values,
$ \Rightarrow 3B{D^2} = 147$
Divide both sides by 3,
$ \Rightarrow B{D^2} = 49$
Take the square root on both sides,
$\therefore BD = 7$
In $\Delta BCD$, $BC = 7$ and $BD = 7$.
So, $\Delta BCD$ is an isosceles triangle.
We know that the altitude on the non-equal side of the isosceles triangle is the perpendicular bisector. So,
$ \Rightarrow CE = ED$...................….. (3)
The length of the CD is 4. Then,
$ \Rightarrow CE + ED = 4$
Substitute the value from equation (3),
$ \Rightarrow ED + ED = 4$
Add the terms,
$ \Rightarrow 2ED = 4$
Divide both sides by 2,
$\therefore ED = 2$
In $\Delta BED$, apply Pythagoras theorem,
$B{E^2} = B{D^2} - E{D^2}$
Substitute the values,
$ \Rightarrow B{E^2} = {7^2} - {2^2}$
Simplify the terms,
$ \Rightarrow B{E^2} = 49 - 4$
Subtract the values,
$ \Rightarrow B{E^2} = 45$
Take the square root on both sides,
$\therefore BE = \sqrt {45} $
Hence, option (4) is correct.
Note: A line segment drawn from the vertex of a triangle on the opposite side of a triangle which is perpendicular to it is said to be the altitude of a triangle.
A median of a triangle is a line segment joining a vertex to the midpoint of the opposite side, thus bisecting that side.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Difference Between Plant Cell and Animal Cell
What is pollution? How many types of pollution? Define it
What is the color of ferrous sulphate crystals? How does this color change after heating? Name the products formed on strongly heating ferrous sulphate crystals. What type of chemical reaction occurs in this type of change.