Answer
Verified
429.9k+ views
Hint: Problems on solving equations of absolute values can be easily done by using the property of absolute values. We will take two cases into consideration for this problem. In the first case we consider a positive value of the term $2x-1$ and in the second case we consider the term $2x-1$ to be a negative one and solve both of the equations to get the solutions of the given equation.
Complete step by step solution:
The expression we have is
$\left| 2x-1 \right|=4x+5$
We apply the property of absolute value in the above equation to solve the equation.
First, we remove the absolute value term in the given equation. This creates two cases among which the first one is where we consider the positive value of the term $2x-1$ and in the second one is where we consider the term $2x-1$ to be negative one.
Therefore, the given equation becomes
$2x-1=4x+5......\left( \text{1} \right)$ , when $\left( 2x-1 \right)>0$
And $-\left( 2x-1 \right)=4x+5......\left( 2 \right)$ , when $\left( 2x-1 \right)<0$
Considering equation $\left( 1 \right)$ we get
$\Rightarrow 4x+5=2x-1$
Subtracting $2x$ from both the sides of the above equation we get
$\Rightarrow 4x+5-2x=2x-1-2x$
Further simplifying we get
$\Rightarrow 2x+5=-1$
Subtracting $5$ from both the sides of the above equation we get
$\Rightarrow 2x+5-5=-1-5$
Further simplifying we get
$\Rightarrow 2x=-6$
Dividing both sides of the above equation by $2$ we get
$\Rightarrow x=-\dfrac{6}{2}$
Further simplifying
$\Rightarrow x=-3$
Considering equation $\left( 2 \right)$ we get
$\Rightarrow 4x+5=-\left( 2x-1 \right)$
$\Rightarrow 4x+5=-2x+1$
Adding $2x$ to both the sides of the above equation we get
$\Rightarrow 4x+5+2x=-2x+1+2x$
Further simplifying we get
$\Rightarrow 6x+5=1$
Subtracting $5$ from both the sides of the above equation we get
$\Rightarrow 6x+5-5=1-5$
Further simplifying
$\Rightarrow 6x=-4$
Dividing both sides of the above equation by $6$ we get
$\Rightarrow x=\dfrac{-4}{6}$
$\Rightarrow x=-\dfrac{2}{3}$
Also, we put both the solutions in the given equation. The solution $x=-\dfrac{2}{3}$ satisfies the given equation but the solution $x=-3$ does not satisfy the given equation as the RHS becomes $-7$ , and any absolute value cannot be negative. Hence, the solution $x=-3$ is an extraneous one.
Therefore, the number of solutions in the equation’s solution set is one.
Note: We have to keep in mind that while removing the absolute term we have to take both the cases $\left( 2x-1 \right)>0$ and $\left( 2x-1 \right)<0$ into account so that we get all the solutions. Also, we must properly simplify the obtained equations so that mistakes are avoided.
Complete step by step solution:
The expression we have is
$\left| 2x-1 \right|=4x+5$
We apply the property of absolute value in the above equation to solve the equation.
First, we remove the absolute value term in the given equation. This creates two cases among which the first one is where we consider the positive value of the term $2x-1$ and in the second one is where we consider the term $2x-1$ to be negative one.
Therefore, the given equation becomes
$2x-1=4x+5......\left( \text{1} \right)$ , when $\left( 2x-1 \right)>0$
And $-\left( 2x-1 \right)=4x+5......\left( 2 \right)$ , when $\left( 2x-1 \right)<0$
Considering equation $\left( 1 \right)$ we get
$\Rightarrow 4x+5=2x-1$
Subtracting $2x$ from both the sides of the above equation we get
$\Rightarrow 4x+5-2x=2x-1-2x$
Further simplifying we get
$\Rightarrow 2x+5=-1$
Subtracting $5$ from both the sides of the above equation we get
$\Rightarrow 2x+5-5=-1-5$
Further simplifying we get
$\Rightarrow 2x=-6$
Dividing both sides of the above equation by $2$ we get
$\Rightarrow x=-\dfrac{6}{2}$
Further simplifying
$\Rightarrow x=-3$
Considering equation $\left( 2 \right)$ we get
$\Rightarrow 4x+5=-\left( 2x-1 \right)$
$\Rightarrow 4x+5=-2x+1$
Adding $2x$ to both the sides of the above equation we get
$\Rightarrow 4x+5+2x=-2x+1+2x$
Further simplifying we get
$\Rightarrow 6x+5=1$
Subtracting $5$ from both the sides of the above equation we get
$\Rightarrow 6x+5-5=1-5$
Further simplifying
$\Rightarrow 6x=-4$
Dividing both sides of the above equation by $6$ we get
$\Rightarrow x=\dfrac{-4}{6}$
$\Rightarrow x=-\dfrac{2}{3}$
Also, we put both the solutions in the given equation. The solution $x=-\dfrac{2}{3}$ satisfies the given equation but the solution $x=-3$ does not satisfy the given equation as the RHS becomes $-7$ , and any absolute value cannot be negative. Hence, the solution $x=-3$ is an extraneous one.
Therefore, the number of solutions in the equation’s solution set is one.
Note: We have to keep in mind that while removing the absolute term we have to take both the cases $\left( 2x-1 \right)>0$ and $\left( 2x-1 \right)<0$ into account so that we get all the solutions. Also, we must properly simplify the obtained equations so that mistakes are avoided.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE