Answer
Verified
468.3k+ views
Hint: Here we are given a factor of the polynomial. To find the other factor, we divide ${x^4} + {x^2} - 20$ by ${x^2} + 5$ using division algorithms and consider the quotient as the other factor.
Complete step by step answer:
Let’s take the number $10$ and one of its factors is $2$. To find the other factor, we divide $10$ by $2$, which gives the quotient as $5$. So, $5$ is another factor $10$.
We use the same logic for the given polynomials and find the required answer.
Step 1: We are given that ${x^2} + 5$ is a factor of${x^4} + {x^2} - 20$.
Now let, $p(x) = {x^4} + {x^2} - 20$ and $q(x) = {x^2} + 5$.
Since, $q(x)$ is a factor of $p(x)$. We know that $p(x) = q(x) \times g(x) + 0$, where $g(x)$ is the other factor. Here, $p(x)$ is the dividend, $q(x)$ is the divisor which is the given factor here, $g(x)$ is the quotient and remainder is zero.
Step 2: Now to find $g(x)$, we should divide $p(x)$ by $q(x)$
Here, p(x) is the dividend and q(x) is the divisor.
Step 3: Now, to start the division. First, we should divide the term with the highest degree of the dividend by the term with the highest degree of the divisor.
Here the term with the highest degree of the dividend is ${x^4}$and the term with the highest degree in the divisor is${x^2}$.
$ \Rightarrow \dfrac{{{x^4}}}{{{x^2}}} = {x^2}$
So, when we divide ${x^4}$ by ${x^2}$ we get${x^2}$, which is the first part of our quotient.
(i.e.)
Step 4: Multiply the term of the quotient which we found in the above step (i.e.)${x^2}$ with each term of the divisor and write it below the dividend
Now, by subtracting ${x^4} + 5{x^2}$ from ${x^4} + {x^2} - 20$, we get
Step 5: Now, let’s repeat steps 2 and 3 with our new dividend (i.e.) $ - 4{x^2} - 20$
In our new dividend, the term with the highest degree is and the term with the highest degree in the divisor is${x^2}$.
When we divide $ - 4{x^2}$ by ${x^2}$, we get$ - 4$.
$ \Rightarrow \dfrac{{ - 4{x^2}}}{{{x^2}}} = - 4$
This is the next term of our quotient.
Step 6: Now, multiply -4 with each term of the divisor and write it below the new dividend.
When we subtract $ - 4{x^2} - 20$ from our new dividend we get 0.
Step 7: Now, the quotient obtained is the other factor.
Therefore, ${x^2} - 4$ is the other factor.
For example if the given polynomial is ${x^4} + {x^2} - 20$. Here the ${x^3}$ is missing so let’s write $0{x^3}$ as this will make the calculation easier.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE