How to solve for \[y\] in \[5x - y = 33\] and \[7x + y = 51\]?
Answer
Verified
442.5k+ views
Hint:
Here, we will use the method of elimination to find the solution of the given equations. We will first add the given equations and simplify it to find the value of variable \[x\]. Then we will substitute this value in one of the equations to get the value of \[y\].
Complete step by step solution:
The given linear equations are:
\[5x - y = 33\] ……………………………………………………\[\left( 1 \right)\]
\[7x + y = 51\] …………..………………………………………\[\left( 2 \right)\]
Now, we will add equations \[\left( 1 \right)\] and \[\left( 2 \right)\]. Therefore, we get
\[5x - y + 7x + y = 33 + 51\]
Adding and subtracting the like terms, we get
\[ \Rightarrow 12x = 84\]
Dividing both sides by 12, we get
\[ \Rightarrow x = \dfrac{{84}}{{12}}\]
\[ \Rightarrow x = 7\]
Now, by substituting \[x = 7\] in equation \[\left( 1 \right)\], we get
\[5\left( 7 \right) - y = 33\]
Multiplying the terms, we get
\[ \Rightarrow 35 - y = 33\]
Now, by rewriting the equation, we get
\[ \Rightarrow y = 35 - 33\]
Subtracting the terms, we get
\[ \Rightarrow y = 2\]
Therefore, the solution for the \[5x - y = 33\] and \[7x + y = 51\] is \[x = 7\] and \[y = 2\]
Additional Information:
The solution set for the linear equations of two variables and with only one equation can be obtained only by the method of substitution. But we know that the linear equation of two variables can be solved by elimination method, cross multiplication method and substitution method. We are using the method of elimination where one variable is eliminated either by adding or subtracting the equations.
Note:
We know that an equation is defined as a mathematical statement with an equality sign between the two algebraic expressions. Linear equations are a combination of constants and variables. Linear equation is defined as an equation with the highest degree as 1. We know that the solution set is a set of values which satisfies the relation between the two mathematical expressions.
Here, we will use the method of elimination to find the solution of the given equations. We will first add the given equations and simplify it to find the value of variable \[x\]. Then we will substitute this value in one of the equations to get the value of \[y\].
Complete step by step solution:
The given linear equations are:
\[5x - y = 33\] ……………………………………………………\[\left( 1 \right)\]
\[7x + y = 51\] …………..………………………………………\[\left( 2 \right)\]
Now, we will add equations \[\left( 1 \right)\] and \[\left( 2 \right)\]. Therefore, we get
\[5x - y + 7x + y = 33 + 51\]
Adding and subtracting the like terms, we get
\[ \Rightarrow 12x = 84\]
Dividing both sides by 12, we get
\[ \Rightarrow x = \dfrac{{84}}{{12}}\]
\[ \Rightarrow x = 7\]
Now, by substituting \[x = 7\] in equation \[\left( 1 \right)\], we get
\[5\left( 7 \right) - y = 33\]
Multiplying the terms, we get
\[ \Rightarrow 35 - y = 33\]
Now, by rewriting the equation, we get
\[ \Rightarrow y = 35 - 33\]
Subtracting the terms, we get
\[ \Rightarrow y = 2\]
Therefore, the solution for the \[5x - y = 33\] and \[7x + y = 51\] is \[x = 7\] and \[y = 2\]
Additional Information:
The solution set for the linear equations of two variables and with only one equation can be obtained only by the method of substitution. But we know that the linear equation of two variables can be solved by elimination method, cross multiplication method and substitution method. We are using the method of elimination where one variable is eliminated either by adding or subtracting the equations.
Note:
We know that an equation is defined as a mathematical statement with an equality sign between the two algebraic expressions. Linear equations are a combination of constants and variables. Linear equation is defined as an equation with the highest degree as 1. We know that the solution set is a set of values which satisfies the relation between the two mathematical expressions.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Difference Between Plant Cell and Animal Cell
What is pollution? How many types of pollution? Define it
What is the color of ferrous sulphate crystals? How does this color change after heating? Name the products formed on strongly heating ferrous sulphate crystals. What type of chemical reaction occurs in this type of change.