NCERT Solutions for Class 11 Maths Chapter 13 Limits and Derivatives in Hindi PDF Download
Download the Class 11 Maths NCERT Solutions in Hindi medium and English medium as well offered by the leading e-learning platform Vedantu. If you are a student of Class 11, you have reached the right platform. The NCERT Solutions for Class 11 Maths in Hindi provided by us are designed in a simple, straightforward language, which are easy to memorise. You will also be able to download the PDF file for NCERT Solutions for Class 11 Maths in Hindi from our website at absolutely free of cost.
NCERT, which stands for The National Council of Educational Research and Training, is responsible for designing and publishing textbooks for all the classes and subjects. NCERT textbooks covered all the topics and are applicable to the Central Board of Secondary Education (CBSE) and various state boards.
We, at Vedantu, offer free NCERT Solutions in English medium and Hindi medium for all the classes as well. Created by subject matter experts, these NCERT Solutions in Hindi are very helpful to the students of all classes.
Access NCERT Solutions for Class 11 Mathematics Chapter 13 – सीमा और अवकलज
प्रश्नावली 13.1
निम्नलिखित सीमाओ के मान प्राप्त कीजिए
1. \[\mathop {\lim }\limits_{{\text{x}} \to 3} {\text{x + 3}}\]
उत्तर: \[\mathop {\lim }\limits_{{\text{x}} \to 3} {\text{(x + 3)}}\;{\text{ = }}\;{\text{3 + 3}}\;{\text{ = }}\;{\text{6}}\]
2. \[\mathop {\lim }\limits_{{\text{x}} \to 1} {\text{(x - }}\dfrac{{22}}{7})\]
उत्तर: \[\mathop {\lim }\limits_{{\text{x}} \to 1} {\text{(x - }}\dfrac{{22}}{7})\; = \;\mathop {\lim }\limits_{{\text{x}} \to \pi } {\text{(x - }}\dfrac{{22}}{7})\; = \;\pi {\text{ - }}\dfrac{{22}}{7}\]
3. \[\mathop {\lim }\limits_{{\text{r}} \to 1} {{(\pi }}{{\text{r}}^{\text{2}}})\]
उत्तर:\[\mathop {\lim }\limits_{{\text{r}} \to 1} {{(\pi }}{{\text{r}}^{\text{2}}})\] $= \pi {(1)^2} = \pi $
4. \[\mathop {\lim }\limits_{{\text{x}} \to 4} {\text{(}}\dfrac{{{\text{4x + 3}}}}{{{\text{x - 2}}}})\]
उत्तर: \[\mathop {\lim }\limits_{{\text{x}} \to 4} {\text{(}}\dfrac{{{\text{4x + 3}}}}{{{\text{x - 2}}}})\; = \;\dfrac{{{\text{4(4) + 3}}}}{{{\text{(4) - 2}}}}\; = \;\dfrac{{16 + 3}}{2}\; = \;\dfrac{{19}}{2}\]
5. \[\mathop {\lim }\limits_{{\text{x}} \to - 1} {\text{(}}\dfrac{{{{\text{x}}^{{\text{10}}}}{\text{ + }}{{\text{x}}^{\text{5}}}{\text{ + 1}}}}{{{\text{x - 1}}}})\]
उत्तर: \[\mathop {\lim }\limits_{{\text{x}} \to - 1} {\text{(}}\dfrac{{{{\text{x}}^{{\text{10}}}}{\text{ + }}{{\text{x}}^{\text{5}}}{\text{ + 1}}}}{{{\text{x - 1}}}})\; = \;\dfrac{{{{( - 1)}^{{\text{10}}}}{\text{ + ( - 1}}{{\text{)}}^{\text{5}}}{\text{ + 1}}}}{{{\text{( - 1) - 1}}}}\]
\[\dfrac{{1 - 1 + 1}}{{ - 2}}\; = \;\dfrac{{ - 1}}{2}\]
6. \[\mathop {\lim }\limits_{{\text{x}} \to 0} {\text{(}}\dfrac{{{{{\text{(x + 1)}}}^5}{\text{ - 1}}}}{{\text{x}}})\]
उत्तर: \[\mathop {\lim }\limits_{{\text{x}} \to 0} {\text{(}}\dfrac{{{\text{(1 + 5x + 10}}{{\text{x}}^2}{\text{ + 10}}{{\text{x}}^3}{\text{ + 5}}{{\text{x}}^4}{\text{ + }}{{\text{x}}^5}{\text{) - 1}}}}{{\text{x}}})\; = \;\mathop {\lim }\limits_{{\text{x}} \to 0} {\text{(}}\dfrac{{{\text{x(5 + 10x + 10}}{{\text{x}}^2}{\text{ + 5}}{{\text{x}}^3}{\text{ + }}{{\text{x}}^4}{\text{)}}}}{{\text{x}}})\]
= \[\mathop {\lim }\limits_{{\text{x}} \to 0} {\text{(5 + 10x + 10}}{{\text{x}}^{\text{2}}}{\text{ + 5}}{{\text{x}}^{\text{3}}}{\text{ + }}{{\text{x}}^{\text{4}}}{\text{)}}\]
=5
या
हम जानते है
$ \mathop {\lim }\limits_{{\text{x}} \to a} \dfrac{{{{\text{x}}^{\text{n}}}{\text{ - 1}}}}{{{\text{x - 1}}}}\;{\text{ = }}\;{\text{n}}{{\text{d}}^{{\text{n - 1}}}}\; $
$ = \;\mathop {\lim }\limits_{{\text{x}} \to 0} \dfrac{{{{{\text{(x + 1)}}}^{\text{5}}}{\text{ - 1}}}}{{\text{x}}}\; $
$ = \;\mathop {\lim }\limits_{{\text{x}} \to 0} \dfrac{{{{{\text{(x + 1)}}}^5} - 1}}{{({\text{x + 1}}) - 1}}\; $
$ = \;\mathop {\lim }\limits_{{\text{x}} \to 0} 5{({\text{x}} + 1)^4}\; $
$ = \;5 $
7. \[\mathop {\lim }\limits_{{\text{x}} \to 2} {\text{(}}\dfrac{{{\text{3}}{{\text{x}}^2}{\text{ - x - 10}}}}{{{{\text{x}}^2} - 4}})\]
उत्तर: \[{\text{x}}\;{\text{ = }}\;{\text{2}}\] पर, दिए गए तर्कसंगत फंगक्शन का मान रूप लेता है।
$ = \;\mathop {\lim }\limits_{{\text{x}} \to 2} \dfrac{{{\text{3}}{{\text{x}}^{\text{2}}}{\text{ - x - 10}}}}{{{{\text{x}}^{\text{2}}}{\text{ - 4}}}} $
$ = \;\mathop {\lim }\limits_{{\text{x}} \to 2} \dfrac{{{\text{(x - 2)(3x + 5)}}}}{{{\text{(x - 2)(x + 2)}}}} $
$ = \;\mathop {\lim }\limits_{{\text{x}} \to 2} \dfrac{{{\text{3x + 5}}}}{{{\text{x + 2}}}} $
$ = \;\dfrac{{3(2) + 5}}{{2 + 2}}\; = \;\dfrac{{11}}{4} $
8. \[\mathop {\lim }\limits_{{\text{x}} \to 3} {\text{(}}\dfrac{{{{\text{x}}^4}{\text{ - 81}}}}{{{\text{2}}{{\text{x}}^{\text{2}}}{\text{ - 5x - 3}}}})\]
उत्तर: \[\mathop {\lim }\limits_{{\text{x}} \to 3} \dfrac{{{\text{(x - 3)(x + 3)}}\left( {{{\text{x}}^{\text{2}}}{\text{ + 9}}} \right)}}{{{\text{(x - 3)(2x + 1)}}}}\]
$ = \;\dfrac{{(3 + 3)\left( {{3^2} + 9} \right)}}{{2(3) + 1}} $
$ = \;\dfrac{{(3 + 3)(9 + 9)}}{{(6 + 1)}} $
$ = \;\dfrac{{6 \times 18}}{7} $
$ = \;\dfrac{{108}}{7} $
9. \[\mathop {\lim }\limits_{{\text{x}} \to 0} {\text{(}}\dfrac{{{\text{ax + b}}}}{{{\text{cx + 1}}}})\]
उत्तर: \[\dfrac{{{\text{a(0) + b}}}}{{{\text{c(0) + 1}}}}\; = \;\dfrac{{{\text{0 + b}}}}{{{\text{0 + 1}}}}\; = \;{\text{b}}\]
10. \[\mathop {\lim }\limits_{{\text{z}} \to 1} {\text{(}}\dfrac{{{{\text{z}}^{\dfrac{{\text{1}}}{{\text{3}}}}}{\text{ - 1}}}}{{{{\text{z}}^{\dfrac{{\text{1}}}{6}}}{\text{ - 1}}}})\]
उत्तर: \[\mathop {\lim }\limits_{{\text{z}} \to 1} \dfrac{{{\text{(}}{{\text{z}}^{\dfrac{{\text{1}}}{6}}}{\text{ - 1)(}}{{\text{z}}^{\dfrac{{\text{1}}}{6}}}{\text{ + 1)}}}}{{{{\text{z}}^6}{\text{ - 1}}}}\]
= \[\dfrac{{1 + 1}}{1}\; = \;2\]
11. \[\mathop {\lim }\limits_{{\text{x}} \to 1} {\text{(}}\dfrac{{{\text{a}}{{\text{x}}^{\text{2}}}{\text{ + bx + c}}}}{{{\text{c}}{{\text{x}}^{\text{2}}}{\text{ + bx + a}}}}),\;{\text{a + b + c}}\; \ne \;0\]
उत्तर: \[\dfrac{{{\text{a(1}}{{\text{)}}^{\text{2}}}{\text{ + b(1) + c}}}}{{{\text{c(1}}{{\text{)}}^{\text{2}}}{\text{ + b(1) + a}}}}\]
= \[\dfrac{{{\text{a + b + c}}}}{{{\text{c + b + a}}}}\;{\text{ = }}\;{\text{1}}\]
12. \[\mathop {\lim }\limits_{{\text{x}} \to - 2} {\text{(}}\dfrac{{\dfrac{{\text{1}}}{{\text{x}}}{\text{ + }}\dfrac{{\text{1}}}{{\text{2}}}}}{{{\text{x + 2}}}}{\text{)}}\]
उत्तर: \[\mathop {\lim }\limits_{{\text{x}} \to - 2} \dfrac{{{\text{x + 2}}}}{{{\text{2x(x + 2)}}}}\]
\[\mathop {\lim }\limits_{{\text{x}} \to - 2} \dfrac{{\text{1}}}{{{\text{2x}}}}\;{\text{ = }}\;\mathop {\lim }\limits_{{\text{x}} \to - 2} \dfrac{{\text{1}}}{{{\text{2( - 2)}}}}\; = \; - \dfrac{1}{4}\]
13. \[\mathop {\lim }\limits_{{\text{x}} \to 0} {\text{(}}\dfrac{{{\text{sinax}}}}{{{\text{bx}}}}{\text{)}}\]
उत्तर: \[\mathop {\lim }\limits_{{\text{x}} \to 0} \dfrac{{{\text{sinax}}}}{{{\text{ax}}}}.\dfrac{{\text{a}}}{{\text{b}}}\] ( \[\because \;\mathop {\lim }\limits_{{\text{x}} \to 0} \dfrac{{{\text{sinax}}}}{{{\text{ax}}}}\; = \;1\] )
= \[1 \times \dfrac{{\text{a}}}{{\text{b}}}\; = \;\dfrac{{\text{a}}}{{\text{b}}}\]
14. \[\mathop {\lim }\limits_{{\text{x}} \to 0} {\text{(}}\dfrac{{{\text{sinax}}}}{{{\text{sinbx}}}}{\text{),}}\;{\text{a,b}}\; \ne \;{\text{0}}\]
उत्तर: \[\mathop {\lim }\limits_{{\text{x}} \to 0} {\text{(}}\dfrac{{{\text{sinax}}}}{{{\text{ax}}}}{\text{)(}}\dfrac{{{\text{bx}}}}{{{\text{sinbx}}}}{\text{)}} \times \dfrac{{\text{a}}}{{\text{b}}}\]
\[1 \times 1 \times \dfrac{{\text{a}}}{{\text{b}}}\; = \;\dfrac{{\text{a}}}{{\text{b}}}\]
15. \[\mathop {\lim }\limits_{{\text{x}} \to {{\pi }}} {\text{(}}\dfrac{{{{sin(\pi - x)}}}}{{{{\pi (\pi - x)}}}}{\text{)}}\]
उत्तर: \[\pi - {\text{x}}\; = \;\theta \;(\therefore \;{\text{x}} \to \pi ,\theta \to 0)\]
$ = \;\mathop {\lim }\limits_{{\text{x}} \to \pi } \dfrac{1}{\pi }\dfrac{{{{sin(\pi - x)}}}}{{{{(\pi - x)}}}} $
$ = \;\mathop {\lim }\limits_{\theta \to 0} \dfrac{{\sin \theta }}{{\pi \theta}}$
$ = \;\mathop {\lim }\limits_{\theta \to 0} \left( {\dfrac{{\sin \theta }}{{\pi \theta }}} \right)\dfrac{1}{\pi }\; = \;\dfrac{1}{\pi } $
16. \[\mathop {\lim }\limits_{{\text{x}} \to 0} {\text{(}}\dfrac{{{\text{cosx}}}}{{{{\pi - x}}}}{\text{)}}\]
उत्तर: \[\dfrac{{{\text{cos0 }}}}{{{{\pi - 0 }}}}\; = \;\dfrac{1}{\pi }\]
17. \[\mathop {\lim }\limits_{{\text{x}} \to 0} \dfrac{{{\text{cos2x - 1}}}}{{{\text{cosx - 1}}}}\]
उत्तर: \[\mathop {\lim }\limits_{{\text{x}} \to 0} \dfrac{{{\text{1 - 2si}}{{\text{n}}^2}{\text{x - 1}}}}{{{\text{cosx - 1}}}}\]
$ = \;\mathop {\lim }\limits_{{\text{x}} \to 0} \dfrac{{{\text{2si}}{{\text{n}}^{\text{2}}}{\text{x}}}}{{{\text{1 - cosx}}}} $
$ = \;\mathop {\lim }\limits_{{\text{x}} \to 0} \dfrac{{{\text{2(1 - cosx)(1 + cosx)}}}}{{{\text{1 - cosx}}}} $
$ = \;\mathop {\lim }\limits_{{\text{x}} \to 0} {\text{2(1 + cosx)}} $
$ = \;2(1 + \cos 0) $
$ = \;2 \times 2\; = \;4 $
18. \[\mathop {\lim }\limits_{{\text{x}} \to 0} \dfrac{{{\text{ax + xcosx}}}}{{{\text{bsinx}}}}\]
उत्तर: \[\mathop {\lim }\limits_{{\text{x}} \to 0} \dfrac{{{\text{x(a + cosx)}}}}{{{\text{bsinx}}}}\]
\[\mathop {\lim }\limits_{{\text{x}} \to 0} (\dfrac{{\text{x}}}{{{\text{sinx}}}})\dfrac{{{\text{a + cosx}}}}{{\text{b}}}\]
\[\mathop {\lim }\limits_{{\text{x}} \to 0} \dfrac{{{\text{a + cosx}}}}{{\text{b}}}\] ( \[\because \;\mathop {\lim }\limits_{{\text{x}} \to 0} \dfrac{{\text{x}}}{{{\text{sinx}}}}\; = \;1\] )
\[{\text{ = }}\;\dfrac{{{\text{a + cos0}}}}{{\text{b}}}\;{\text{ = }}\;\dfrac{{{\text{a + 1}}}}{{\text{b}}}\]
19. \[\mathop {\lim }\limits_{{\text{x}} \to 0} {\text{xsecx}}\]
उत्तर: \[\mathop {\lim }\limits_{{\text{x}} \to 0} (\dfrac{{\text{x}}}{{{\text{cosx}}}}{\text{)}}\]
\[ = \;\dfrac{0}{{{\text{cos0 }}}}\; = \;\dfrac{0}{1}\; = \;0\]
20. \[\mathop {\lim }\limits_{{\text{x}} \to 0} \dfrac{{{\text{sinax + bx}}}}{{{\text{ax + sinbx}}}},\;{\text{a,b,c}}\; \ne \;0\]
उत्तर: जब अंश और हर को \[{\text{x}}\] भाग कर के
$ = \;\mathop {\lim }\limits_{{\text{x}} \to 0} \left( {\dfrac{{\dfrac{{\sin ax}}{x} + b}}{{a + \dfrac{{\sin bx}}{x}}}} \right) $
$ = \;\mathop {\lim }\limits_{x \to 0} \dfrac{{\left( {\dfrac{{{\text{sinax}}}}{{{\text{ax}}}}} \right){\text{ + a + b}}}}{{{\text{a + }}\left( {\dfrac{{{\text{sinbx}}}}{{{\text{bx}}}}} \right){\text{b}}}} $
\[ = \;\dfrac{{{\text{1a + b}}}}{{{\text{a + 1b}}}}\; = \;\dfrac{{{\text{a + b}}}}{{{\text{a + b}}}}\]
\[ = \;1,\;{\text{a + b}} \ne 0\]
21. \[\mathop {\lim }\limits_{{\text{x}} \to 0} {\text{(cosecx - cotx)}}\]
उत्तर: \[\mathop {\lim }\limits_{{\text{x}} \to 0} (\dfrac{{\text{1}}}{{{\text{sinx}}}}{\text{ - }}\dfrac{{{\text{cosx}}}}{{{\text{sinx}}}}{\text{)}}\]
$ = \;\mathop {\lim }\limits_{{\text{x}} \to 0} \dfrac{{{\text{(1 - cosx)} \times \text{sinx}}}}{{{\text{(sinx)(sinx)}}}} $
$ = \;\mathop {\lim }\limits_{{\text{x}} \to 0} \dfrac{{{\text{(1 - cosx)} \times \text{sinx}}}}{{{\text{(1 - cosx)(1 + cosx)}}}} $
$ = \;\mathop {\lim }\limits_{{\text{x}} \to 0} \left( {\dfrac{{{\text{sinx}}}}{{{\text{1 + cosx}}}}} \right) $
$ = \;\dfrac{0}{2}\; = \;0 $
22. \[\mathop {\lim }\limits_{{\text{x}} \to \dfrac{\pi }{2}} (\dfrac{{{\text{tan2x}}}}{{{\text{x - }}\dfrac{\pi }{2}}})\]
उत्तर: \[\mathop {\lim }\limits_{{\text{x}} \to \dfrac{\pi }{2}} (\dfrac{{{\text{tan2x}}}}{{{\text{x - }}\dfrac{\pi }{2}}})\] मे \[{\text{x}}\;{\text{ = }}\;\dfrac{{{\pi }}}{{\text{2}}}{\text{ + h}}\] रेखने पर
$ = \;\mathop {\lim }\limits_{{\text{h}} \to 0} \left( {\dfrac{{{\text{tan2}}\left( {\dfrac{{{\pi }}}{{\text{2}}}{\text{ + h}}} \right)}}{{\text{h}}}} \right) $
$ = \;\mathop {\lim }\limits_{{\text{h}} \to 0} \left( {\dfrac{{{{tan(\pi + 2h)}}}}{{\text{h}}}} \right) $
$ = \;\mathop {\lim }\limits_{{\text{h}} \to 0} \left( {\dfrac{{{\text{tan(2h)}}}}{{\text{h}}}} \right) $
$ = \;\mathop {\lim }\limits_{{\text{h}} \to 0} \left( {\dfrac{{{\text{sin(2h)}}}}{{{\text{cos(2h)} \times \text{h}}}}} \right) $
$ = \;\mathop {\lim }\limits_{{\text{h}} \to 0} \left( {\dfrac{{{\text{sin(2h)} \times \text{ 2}}}}{{{\text{cos(2h)} \times \text{2h}}}}} \right) $
$ \left\{ {\because \;\mathop {\lim }\limits_{{\text{h}} \to 0} \left( {\dfrac{{{\text{sin(2h)}}}}{{{\text{2h}}}} = 1} \right)} \right\} $
$ = \;\mathop {\lim }\limits_{{\text{h}} \to 0} \left( {\dfrac{{\text{2}}}{{{\text{cos(2h)}}}}} \right) $
$ = \;2/\cos 0\; = \;2/1\; $
$ = \;2 $
23. \[\mathop {\lim }\limits_{{\text{x}} \to 0} {\text{f(x),}} और \;\mathop {\lim }\limits_{{\text{x}} \to 1} {\text{f(x)}}\] ज्ञात कीजिए जहा \[{\text{f(x)}} = \left\{ {\begin{array}{*{20}{r}} {{\text{2x + 3}},}&{{\text{x}} \leqslant 0} \\ {{\text{3(x + 1)}},}&{{\text{x}} \geqslant 0} \end{array}} \right.\]
उत्तर:
(i) \[\mathop {\lim }\limits_{{\text{x}} \to 0} {\text{f(x)}}\] के लिए सारणी इस प्रकार है
x | -0.01 | -0.001 | -0.0001 |
f(x) | 2.98 | 2.998 | 2.9998 |
\[\mathop {\lim }\limits_{{\text{x}} \to 0} {\text{f(x)}}\;{\text{ = }}\;{\text{3}}\]
\[{\text{f(x)}}\;{\text{ = }}\;{\text{3(x + 1)}}\]
x | 0.01 | 0.001 | 0.0001 |
f(x) | 3.03 | 3.003 | 3.0003 |
\[\mathop {\lim }\limits_{{\text{x}} \to 0} {\text{f(x)}}\;{\text{ = }}\;{\text{3}}\]
\[{\text{f(x)}}\;{\text{ = }}\;{\text{3(x + 1)}}\]
\[{\text{x < 0,}}\;{\text{f(x)}}\;{\text{ = }}\;{\text{2x + 3}}\]
\[\mathop {\lim }\limits_{{\text{x}} \to {{\text{a}}^ - }} {\text{(2x + 3)}} = \mathop {\lim }\limits_{{\text{h}} \to 0} {\text{(2(0 - h) + 3) = 3}}\]
\[{\text{x > 0,}}\;{\text{f(x)}}\;{\text{ = }}\;{\text{3(1 + x)}}\]
\[\mathop {\lim }\limits_{{\text{x}} \to {{\text{a}}^ - }} {\text{(3x + 3)}} = \mathop {\lim }\limits_{{\text{h}} \to 0} {\text{(3(0 + h) + 3) = 3}}\]
(ii) \[\mathop {\lim }\limits_{{\text{x}} \to {1^ - }} {\text{f(x)}}\] के लिए सारणी इस प्रकार है
\[{\text{x}}\;{\text{ = }}\;{\text{0}}{\text{.9999,}}\;{\text{f(x)}}\;{\text{ = }}\;{\text{5}}{\text{.9997}}\]
\[\mathop {\lim }\limits_{{\text{x}} \to {1^ - }} 3{\text{(x + 1)}}\;{\text{ = }}\;{\text{6}}\]
\[{\text{x}}\;{\text{ = }}\;1.0001{\text{,}}\;{\text{f(x)}}\;{\text{ = }}\;6.0003\]
\[\mathop {\lim }\limits_{{\text{x}} \to {1^ + }} 3{\text{(x + 1)}}\;{\text{ = }}\;{\text{6}}\]
\[\mathop {\lim }\limits_{{\text{x}} \to 1} {\text{f(x)}}\;{\text{ = }}\;{\text{6}}\]
24. \[\mathop {\lim }\limits_{{\text{x}} \to 1} {\text{f(x)}}\] जहा \[{\text{f(x)}} = \left\{ {\begin{array}{*{20}{r}} {{{\text{x}}^{\text{2}}}{\text{ - 1}},}&{{\text{x}} \leqslant 1} \\ {{\text{ - }}{{\text{x}}^{\text{2}}}{\text{ - 1}},}&{{\text{x > 1}}} \end{array}} \right.\]
उत्तर: \[{\text{x < 1,}}\;{\text{f(x)}}\;{\text{ = }}\;{{\text{x}}^{\text{2}}}{\text{ - 1}}\]
\[{\text{x}}\;{\text{ = }}\;0.999{\text{,}}\;{\text{f(x)}}\;{\text{ = }}\; - 0.001999\]
\[\mathop {\lim }\limits_{{\text{x}} \to {1^ - }} {\text{f(x)}}\;{\text{ = }}\;0\] ………………………..(i)
\[{\text{x > 1,}}\;{\text{f(x)}}\;{\text{ = }}\;{\text{ - }}{{\text{x}}^{\text{2}}}{\text{ - 1}}\]
\[{\text{x}}\;{\text{ = }}\;1.0001{\text{,}}\;{\text{f(x)}}\;{\text{ = }}\; - 2.002001\]
\[\mathop {\lim }\limits_{{\text{x}} \to + 1} {\text{f(x)}}\;{\text{ = }}\; - 2\] ………………………(ii)
(i) और (ii) से \[\mathop {\lim }\limits_{{\text{x}} \to {1^ - }} {\text{f(x}}) \ne \mathop {\lim }\limits_{{\text{x}} \to + 1} {\text{f(x)}}\]
इस प्रकार \[{\text{x}}\;{\text{ = }}\;{\text{1}}\] सीमा मोजूद नहीं है
25. \[\mathop {\lim }\limits_{{\text{x}} \to 0} {\text{f(x)}}\] जहा \[{\text{f(x)}} = \left\{ {\begin{array}{*{20}{r}} {|{\text{x}}|/{\text{x}},}&{{\text{x}} \ne 0} \\ {0,}&{{\text{x}} = 0} \end{array}} \right.\]
उत्तर: \[{\text{x}} < 0,\;\;{\text{|x|}}\;{\text{ = }}\;{\text{ - x}}\]
$ \mathop {\lim }\limits_{{\text{x}} \to {0^ - }} {\text{f(x}})\; = \;\mathop {\lim }\limits_{{\text{x}} \to {0^ - }} {\text{(|x|/x)}}\; = \;\mathop {\lim }\limits_{{\text{x}} \to {0^ - }} {\text{( - x/x)}}\; = \; - 1 $
$ {\text{x > 0,}}\;\;{\text{|x|}}\;{\text{ = }}\;{\text{x}} $
$ \mathop {\lim }\limits_{{\text{x}} \to + 0} {\text{f(x}})\; = \;\mathop {\lim }\limits_{{\text{x}} \to + 0} ({\text{|x|/x}})\; = \;\mathop {\lim }\limits_{{\text{x}} \to + 0} ({\text{x/x)}}\; = \;1 $
इस प्रकार \[{\text{x}}\;{\text{ = }}\;0\] सीमा मोजूद नहीं है
26. \[\mathop {\lim }\limits_{{\text{x}} \to 0} {\text{f(x)}}\] जहा \[{\text{f(x)}} = \left\{ {\begin{array}{*{20}{r}} {|{\text{x}}|/{\text{x}},}&{{\text{x}} \ne 0} \\ {0,}&{{\text{x}} = 0} \end{array}} \right.\]
उत्तर: \[{\text{x}} < 0,\;\;{\text{|x|}}\;{\text{ = }}\;{\text{ - x}}\]
$ \mathop {\lim }\limits_{{\text{x}} \to {0^ - }} {\text{f(x}})\; = \;\mathop {\lim }\limits_{{\text{x}} \to {0^ - }} {\text{(|x|/x)}}\; = \;\mathop {\lim }\limits_{{\text{x}} \to {0^ - }} {\text{( - x/x)}}\; = \; - 1 $
$ {\text{x > 0,}}\;\;{\text{|x|}}\;{\text{ = }}\;{\text{x}} $
$ \mathop {\lim }\limits_{{\text{x}} \to + 0} {\text{f(x}})\; = \;\mathop {\lim }\limits_{{\text{x}} \to + 0} ({\text{|x|/x}})\; = \;\mathop {\lim }\limits_{{\text{x}} \to + 0} ({\text{x/x)}}\; = \;1 $
इस प्रकार \[{\text{x}}\;{\text{ = }}\;0\] सीमा मोजूद नहीं है
27. \[\mathop {\lim }\limits_{{\text{x}} \to 5} {\text{f(x)}}\] जहा \[{\text{f(x)}}\;{\text{ = }}\;\left| {\text{x}} \right|{\text{ - 5}}\]
उत्तर: \[\mathop {\lim }\limits_{{\text{x}} \to {5^ - }} {\text{f(x)}}\;{\text{ = }}\;\mathop {\lim }\limits_{{\text{x}} \to {5^ - }} {\text{(}}\left| {\text{x}} \right|{\text{ - 5 )}}\]
$ = \;\mathop {\lim }\limits_{{\text{h}} \to 0} (|5 - {\text{h}}| - 5) $
$ = \;\mathop {\lim }\limits_{{\text{h}} \to 0} (5 - {\text{h}} - 5)\; = \;\mathop {\lim }\limits_{{\text{h}} \to 0} ( - {\text{h}})\; = \;0 $
$ \mathop {\lim }\limits_{{\text{x}} \to 5 + } {\text{f(x)}}\; = \;\mathop {\lim }\limits_{{\text{x}} \to 5 + } {\text{(|x| - 5)}}\; $
$ = \;\mathop {\lim }\limits_{{\text{h}} \to 0} (|5 + {\text{h}}| - 5) $
$ = \;\mathop {\lim }\limits_{{\text{h}} \to 0} (5 + {\text{h}} - 5)\; = \;\mathop {\lim }\limits_{{\text{h}} \to 0} (\;{\text{h}})\; = \;0 $
$ \mathop {\lim }\limits_{{\text{x}} \to {5^ - }} {\text{f(x)}}\; = \;\mathop {\lim }\limits_{{\text{x}} \to 5 + } {\text{f(x)}} $
28. मान लीजिए \[{\text{f(x)}} = \left\{ \begin{gathered} \begin{array}{*{20}{r}} {{\text{a + bx}},}&{{\text{x < }}1} \\ {4,}&{{\text{x = 1}}} \end{array} \hfill \\ {\text{b - ax, x > 1}} \hfill \\ \end{gathered} \right.\]
उत्तर: \[{\text{x < 1,}}\;{\text{f(x)}}\;{\text{ = }}\;{\text{a + bx}}\]
$ {\text{x}}\;{\text{ = }}\;{\text{0}}{\text{.999,}}\;{\text{f(x)}}\;{\text{ = }}\;{\text{a + 0}}{\text{.999b}} $
$ \mathop {\lim }\limits_{{\text{x}} \to {1^ - }} {\text{f(x)}}\;{\text{ = }}\;{\text{a + b}} $
\[{\text{x > 1,}}\;{\text{f(x)}}\;{\text{ = }}\;{\text{b - ax}}\]
$ {\text{x}}\;{\text{ = }}\;1.0001{\text{,}}\;{\text{f(x)}}\;{\text{ = }}\;{\text{b - 1}}{\text{.0001a}} $
$ \mathop {\lim }\limits_{{\text{x}} \to {1^ - }} {\text{f(x)}}\;{\text{ = }}\;{\text{a + b}} $
$ \mathop {\lim }\limits_{{\text{x}} \to 1 + } {\text{f(x)}}\;{\text{ = }}\;{\text{a + b}}\; = \;{\text{f(1)}}\;{\text{ = }}\;{\text{4}} $
\[{\text{a + b}}\;{\text{ = }}\;{\text{4}}\] …………….(i)
\[\mathop {\lim }\limits_{{\text{x}} \to {1^ - }} {\text{f(x)}}\;{\text{ = }}\;{\text{a + b}}\; = \;{\text{f(1)}}\;{\text{ = }}\;{\text{4}}\]
\[{\text{b - a}}\;{\text{ = }}\;{\text{4}}\] ………….(ii)
$ \therefore \;{\text{a + b + b - a}}\; = \;8 $
$ {\text{2b}}\;{\text{ = }}\;{\text{8}} $
$ {\text{b}}\;{\text{ = }}\;{\text{4,}}\;{\text{a}}\;{\text{ = }}\;{\text{0}} $
29. मान लीजिए \[{{\text{a}}_{\text{1}}}{\text{,}}{{\text{a}}_{\text{2}}}{\text{,}}......{\text{,}}{{\text{a}}_{\text{n}}}\] वास्तविक संख्या है और \[{\text{f(x)}}\;{\text{ = }}\;{\text{(x - }}{{\text{a}}_{\text{1}}}{\text{)(x - }}{{\text{a}}_{\text{2}}}{\text{)}}......{\text{(x - }}{{\text{a}}_{\text{n}}})\] से परिभाषा है। \[\mathop {\lim }\limits_{{\text{x}} \to {\text{a}}} {\text{f(x)}}\] क्या है।
उत्तर: फैक्टर \[{\text{(x - }}{{\text{a}}_{\text{1}}}{\text{)}}\] के लिए
यदि \[{\text{x > }}{{\text{a}}_{\text{1}}}{\text{,}}\;{\text{x - }}{{\text{a}}_{\text{1}}} > 0\]
$ \mathop {\lim }\limits_{{\text{x}} \to {a_1}} {\text{f}}\left( {{\text{x - }}{{\text{a}}_{\text{1}}}} \right)\;{\text{ = }}\;\left( {{{\text{a}}_{\text{1}}}{\text{ - }}{{\text{a}}_{\text{2}}}} \right) $
$ \mathop {\lim }\limits_{{\text{x}} \to {a_1}} {\text{f(x)}}\; = \;\left( {{\text{x - }}{{\text{a}}_{\text{1}}}} \right)\left( {{\text{x - }}{{\text{a}}_{\text{2}}}} \right){{ \dots }}\left( {{\text{x - }}{{\text{a}}_{\text{n}}}} \right) $
$ = \;\mathop {\lim }\limits_{x \to {a_1}} \left( {{\text{x - }}{{\text{a}}_{\text{1}}}} \right)\mathop {\lim }\limits_{{\text{x}} \to {a_1}} \left( {{\text{x - }}{{\text{a}}_{\text{2}}}} \right){{ \dots }}\left( {{\text{x - }}{{\text{a}}_{\text{n}}}} \right) $
$ = \;0 \times \mathop {\lim }\limits_{{\text{x}} \to {a_1}} \left( {{\text{x - }}{{\text{a}}_{\text{2}}}} \right){{ \dots }}\left( {{\text{x - }}{{\text{a}}_{\text{n}}}} \right)\; = \;0 $
जब \[{\text{a}}\;{\text{ = }}\;{{\text{a}}_{\text{1}}}{\text{,}}{{\text{a}}_{\text{2}}}{\text{,}}........{\text{,}}{{\text{a}}_{\text{n}}}\]
जैसे ही \[{\text{x > a,}}\;{\text{x - }}{{\text{a}}_{\text{1}}}{\text{ > a - }}{{\text{a}}_{\text{1}}}\]
\[{\text{a - }}{{\text{a}}_1}\] शून्य नहीं है
इस प्रकार दूसरे कारक के मूल्य \[{\text{a - }}{{\text{a}}_{\text{1}}}{\text{,a - }}{{\text{a}}_{\text{2}}}{\text{,}}........{\text{,a - }}{{\text{a}}_{\text{n}}}\]
अब \[\mathop {\lim }\limits_{{\text{x}} \to {a_1}} {\text{f(x)}}\; = \;\left( {{\text{x - }}{{\text{a}}_{\text{1}}}} \right)\left( {{\text{x - }}{{\text{a}}_{\text{2}}}} \right){{ \dots }}\left( {{\text{x - }}{{\text{a}}_{\text{n}}}} \right)\]
\[ = \;\left( {{\text{a - }}{{\text{a}}_{\text{1}}}} \right)\left( {{\text{a - }}{{\text{a}}_{\text{2}}}} \right){{ \dots }}\left( {{\text{a - }}{{\text{a}}_{\text{n}}}} \right)\]
30. यदि \[{\text{f(x)}} = \left\{ \begin{gathered} \begin{array}{*{20}{r}} {\left| {\text{x}} \right| + 1,}&{{\text{x < }}1} \\ {0,}&{{\text{x = 1}}} \end{array} \hfill \\ \left| {\text{x}} \right|{\text{ - 1 , x > 1}} \hfill \\ \end{gathered} \right.\]
उत्तर: (i) \[{\text{x}}\;{\text{ = }}\;{\text{0}}\] ,
$ \mathop {\lim }\limits_{{\text{x}} \to {0^ - }} {\text{f(x)}}\; = \;\mathop {\lim }\limits_{{\text{x}} \to {0^ - }} {\text{(1 - x)}}\; = \;1 $
$ \mathop {\lim }\limits_{{\text{x}} \to 0 + } {\text{f(x)}}\; = \;\mathop {\lim }\limits_{{\text{x}} \to 0 + } {\text{(x - 1)}}\; = \; - 1 $
$ \mathop {\lim }\limits_{{\text{x}} \to {0^ - }} {\text{f(x)}}\; \ne \;\mathop {\lim }\limits_{{\text{x}} \to 0 + } {\text{f(x)}} $
\[{\text{x}}\;{\text{ = }}\;{\text{0}}\] पर \[\mathop {\lim }\limits_{{\text{x}} \to 0} {\text{f(x)}}\] मोजूद नहीं है
(ii) \[{\text{a < 0}}\] ,
$ \mathop {\lim }\limits_{{\text{x}} \to {{\text{a}}^{\text{ - }}}} {\text{f(x)}}\; = \;\mathop {\lim }\limits_{{\text{x}} \to {{\text{a}}^{\text{ - }}}} {\text{(1 - x)}}\;{\text{ = }}\;{\text{1 - a}} $
$ \mathop {\lim }\limits_{{\text{x}} \to {\text{a}} + } {\text{f(x)}}\; = \;\mathop {\lim }\limits_{{\text{x}} \to {\text{a + }}} {\text{(1 - x)}}\;{\text{ = }}\;{\text{1 - a}} $
$ \mathop {\lim }\limits_{{\text{x}} \to {{\text{a}}^{\text{ - }}}} {\text{f(x)}}\; = \;\mathop {\lim }\limits_{{\text{x}} \to {\text{a + }}} {\text{f(x)}} $
$ \mathop {\lim }\limits_{{\text{x}} \to {\text{a}}} {\text{f(x)}}\; = \;{\text{1 - a}} $
(iii) \[{\text{a > 0}}\] ,
$ \mathop {\lim }\limits_{{\text{x}} \to {{\text{a}}^{\text{ - }}}} {\text{f(x)}}\; = \;\mathop {\lim }\limits_{{\text{x}} \to {{\text{a}}^{\text{ - }}}} {\text{(x - 1)}}\;{\text{ = }}\;{\text{a - 1}} $
$ \mathop {\lim }\limits_{{\text{x}} \to {\text{a}} + } {\text{f(x)}}\; = \;\mathop {\lim }\limits_{{\text{x}} \to {\text{a + }}} {\text{(x - 1)}}\;{\text{ = }}\;{\text{a - 1}} $
$\mathop {\lim }\limits_{{\text{x}} \to {{\text{a}}^{\text{ - }}}} {\text{f(x)}}\; = \;\mathop {\lim }\limits_{{\text{x}} \to {\text{a + }}} {\text{f(x)}} $
$ \mathop {\lim }\limits_{{\text{x}} \to {\text{a}}} {\text{f(x)}}\; = \;{\text{a - 1}} $
इस तरह
जब \[{\text{a < 0}}\] , \[\mathop {\lim }\limits_{{\text{x}} \to {\text{a}}} {\text{f(x)}}\;{\text{ = }}\;1 - {\text{a }}\]
जब \[{\text{a > 0}}\] , \[\mathop {\lim }\limits_{{\text{x}} \to {\text{a}}} {\text{f(x)}}\;{\text{ = }}\;{\text{a - 1 }}\]
जब \[{\text{a}} \ne 0\] के लिए \[\mathop {\lim }\limits_{{\text{x}} \to {\text{a}}} {\text{f(x)}}\] का अस्तित्व है।
31. यदि फलन \[{\text{f(x)}}\] , \[\mathop {\lim }\limits_{{\text{x}} \to 1} {\text{(f(x) - 2)/}}{{\text{x}}^2} - 1\; = \;\pi \] को संतुष्ट करता है तो \[\mathop {\lim }\limits_{{\text{x}} \to 1} {\text{ f(x)}}\] का मान प्राप्त कीजिए।
उत्तर: जैसे ही \[{\text{x}}\;{\text{ = }}\;{\text{1}}\] , \[\mathop {\lim }\limits_{{\text{x}} \to 1} {\text{(f(x) - 2)/}}{{\text{x}}^2} - 1\; = \;\pi \] दिया हुआ है
जैसे ही \[{\text{x}}\;{\text{ = }}\;{\text{1}}\] , \[{{\text{x}}^2}{\text{ - 1}}\;{\text{ = }}\;{\text{0 }}\]
जिससे, जैसे ही \[{\text{x}}\;{\text{ = }}\;{\text{1}}\] , \[\dfrac{{{\text{f(x) - 2 }}}}{{{{\text{x}}^2}{\text{ - 1}}}}\; = \;\dfrac{0}{0}\] रूप मे होगा
जैसे ही \[{\text{x}}\;{\text{ = }}\;{\text{1}}\] , \[{\text{f(x) - 2}}\; = \;0\]
\[\mathop {\lim }\limits_{{\text{x}} \to 1} {\text{f(x)}}\;{\text{ = }}\;{\text{2 }}\]
32. यदि सीमा \[\mathop {\lim }\limits_{{\text{x}} \to 0} {\text{ f(x)}}\] और \[\mathop {\lim }\limits_{{\text{x}} \to 1} {\text{ f(x)}}\] मोजूद है तो \[{\text{m}}\] और \[{\text{n}}\] के मान ज्ञात करे
\[{\text{f(x)}} = \left\{ {\begin{array}{*{20}{c}} {{\text{m}}{{\text{x}}^{\text{2}}}{\text{ + n}},}&{{\text{x}} < 0} \\ {{\text{nx + m}},}&{0 \leqslant {\text{x}} \leqslant 1} \\ {{\text{n}}{{\text{x}}^{\text{3}}}{\text{ + m}},}&{{\text{x}} > 1} \end{array}} \right.\]
उत्तर: जब \[{\text{x}}\;{\text{ = }}\;{\text{0}}\] ,
$ \mathop {\lim }\limits_{{\text{x}} \to {0^ - }} {\text{f(x)}}\; = \;\mathop {\lim }\limits_{{\text{x}} \to {0^ - }} {\text{f}}\left( {{\text{m}}{{\text{x}}^{\text{2}}}{\text{ + n}}} \right)\;{\text{ = }}\;{\text{n}} $
$ \mathop {\lim }\limits_{{\text{x}} \to 0 + } {\text{f(x)}}\; = \;\mathop {\lim }\limits_{{\text{x}} \to 0 + } {\text{f(nx + m)}}\;{\text{ = }}\;{\text{m}} $
जब \[{\text{x}}\;{\text{ = }}\;1\] ,
$ \mathop {\lim }\limits_{{\text{x}} \to {1^ - }} {\text{f(x)}}\; = \;\mathop {\lim }\limits_{{\text{x}} \to {1^ - }} {\text{f}}\left( {{\text{nx + m}}} \right)\;{\text{ = }}\;{\text{m + n}} $
$ \mathop {\lim }\limits_{{\text{x}} \to 1 + } {\text{f(x)}}\; = \;\mathop {\lim }\limits_{{\text{x}} \to 1 + } {\text{f(nx + m)}}\;{\text{ = }}\;{\text{m + n }} $
\[\mathop {\lim }\limits_{{\text{x}} \to 0} {\text{ f(x)}}\] के अस्तित्व के लिए \[{\text{m}}\] और \[{\text{n}}\] समान होना चाहिए और \[\mathop {\lim }\limits_{{\text{x}} \to 1} {\text{ f(x)}}\] के अस्तित्व के लिए \[{\text{m}}\] और \[{\text{n}}\] कोई भी पूर्णक मूल्य होना चाहिए।
प्रश्नावली 13.2
1. \[{\text{x}}\;{\text{ = }}\;{\text{10}}\] पर \[{{\text{x}}^2} - 2\] का अवकलज ज्ञात कीजिए।
उत्तर: \[{\text{x}}\;{\text{ = }}\;{\text{a}}\] पर \[{\text{f(x)}}\] का अवकलज
= \[\mathop {\lim }\limits_{{\text{h}} \to 0} \dfrac{{{\text{f(a + h) - f(a)}}}}{{\text{h}}}\]
\[{\text{x}}\;{\text{ = }}\;{\text{10}}\] पर \[{{\text{x}}^2} - 2\] का अवकलज,
$\text{f}^\prime(a)$=$ \;\mathop {\lim }\limits_{{\text{h}} \to 0} \dfrac{{\left[ {{{{\text{(10 + h)}}}^{\text{2}}}{\text{ - 2}}} \right]{\text{ - }}\left( {{\text{1}}{{\text{0}}^{\text{2}}}{\text{ - 2}}} \right)}}{{\text{h}}}$
$ = \;\mathop {\lim }\limits_{{\text{h}} \to 0} \dfrac{{{\text{100 + 20h + }}{{\text{h}}^{\text{2}}}{\text{ - 2 - 100 + 2}}}}{{\text{h}}} $
$ = \;\mathop {\lim }\limits_{{\text{h}} \to 0} \dfrac{{{\text{20h + }}{{\text{h}}^{\text{2}}}}}{{\text{h}}} $
$ = \;\mathop {\lim }\limits_{{\text{h}} \to 0} {\text{(20 + h)}} $
$ = \;20 $
2. \[{\text{x}}\;{\text{ = }}\;{\text{1}}\] पर \[{\text{x}}\] का अवकलज ज्ञात कीजिए।
उत्तर: \[{\text{x}}\;{\text{ = }}\;{\text{a}}\] पर \[{\text{f(x)}}\] का अवकलज = \[\mathop {\lim }\limits_{{\text{h}} \to 0} \dfrac{{{\text{f(a + h) - f(a)}}}}{{\text{h}}}\]
\[{\text{x}}\;{\text{ = }}\;{\text{1}}\] पर \[{\text{x}}\] का अवकलज,
\[\text{f}^\prime(a)\; = \;\mathop {\lim }\limits_{{\text{h}} \to 0} \dfrac{{(1 + {\text{h) - 1}}}}{{\text{h}}} = \;1\]
3. \[{\text{x}}\;{\text{ = }}\;{\text{100 }}\] पर \[{\text{99x}}\] का अवकलज ज्ञात कीजिए।
उत्तर: \[{\text{x}}\;{\text{ = }}\;{\text{a}}\] पर \[{\text{f(x)}}\] का अवकलज = \[\mathop {\lim }\limits_{{\text{h}} \to 0} \dfrac{{{\text{f(a + h) - f(a)}}}}{{\text{h}}}\]
\[{\text{x}}\;{\text{ = }}\;{\text{100 }}\] पर \[{\text{99x}}\] का अवकलज,
$ \text{f}^\prime(a)\; = \;\mathop {\lim }\limits_{{\text{h}} \to 0} \dfrac{{99(100 + {\text{h) - 99}} \times {\text{100}}}}{{\text{h}}} = \;\mathop {\lim }\limits_{{\text{h}} \to 0} \dfrac{{{{99 \times h}}}}{{\text{h}}} $
$ = \;99 $
4. प्रथम सिद्धांतसे निम्नलिखित फलनों के अवकलज ज्ञात कीजिए:
(i) \[{{\text{x}}^3} - 27\]
उत्तर: \[{\text{f(x)}}\] = \[{{\text{x}}^3} - 27\]
\[{\text{f(x + h)}}\] = \[{{\text{(x + h)}}^3} - 27\; = \;{{\text{x}}^{\text{3}}}{\text{ + 3}}{{\text{x}}^{\text{2}}}{\text{h + 3x}}{{\text{h}}^{\text{2}}}{\text{ + }}{{\text{h}}^{\text{3}}}{\text{ - 27}}\]
\[{\text{f(x + h) - f(x)}}\] = \[({{\text{x}}^{\text{3}}}{\text{ + 3}}{{\text{x}}^{\text{2}}}{\text{h + 3x}}{{\text{h}}^{\text{2}}}{\text{ + }}{{\text{h}}^{\text{3}}}{\text{ - 27) - (}}{{\text{x}}^3} - 27)\]
= \[{\text{3}}{{\text{x}}^{\text{2}}}{\text{ + 3x}}{{\text{h}}^{\text{2}}}{\text{ + }}{{\text{h}}^{\text{3}}}\;{\text{ = }}\;{\text{h(3}}{{\text{x}}^{\text{2}}}{\text{ + 3xh + }}{{\text{h}}^{\text{2}}}{\text{)}}\]
\[{{\text{f}}^\prime}{\text{(x)}}\; = \;\mathop {\lim }\limits_{{\text{h}} \to 0} \dfrac{{{\text{f(x + h) - f(x)}}}}{{\text{h}}}\]
$ = \;\mathop {\lim }\limits_{{\text{h}} \to 1} \dfrac{{{\text{h}}\left( {{\text{3}}{{\text{x}}^{\text{2}}}{\text{h + 3}}{{\text{x}}^{\text{2}}}{\text{h + }}{{\text{h}}^{\text{3}}}} \right)}}{{\text{h}}}$
$ = \;{\text{3}}{{\text{x}}^{\text{2}}} $
(ii) \[{\text{(x - 1)(x - 2)}}\]
उत्तर: \[{\text{f(x) = (x - 1)(x - 2) = }}{{\text{x}}^{\text{2}}}{\text{ - 3x + 2}}\]
$ f(x + h) = {x + h}^2 - 3(x + h) + 2 $
$ = \;\left( {{{\text{x}}^{\text{2}}}{\text{ + 2xh + }}{{\text{h}}^{\text{2}}}} \right) - {\text{(3x + 3h)}} + 2 $
$ {\text{f(x + h) - f(x)}} = \;\left( {{{\text{x}}^{\text{2}}}{\text{ + 2xh + }}{{\text{h}}^{\text{2}}}} \right) - {\text{(3x + 3h)}} + 2 - \left( {{{\text{x}}^{\text{2}}}{\text{ - 3x + 2}}} \right) $
$ = \;{\text{2xh + }}{{\text{h}}^{\text{2}}}{\text{ - 3h}} $
$ = \;{\text{h(2x + h - 3)}} $
$ {{\text{f}}^\prime}{\text{(x)}} = \;\mathop {\lim }\limits_{{\text{h}} \to 0} \dfrac{{{\text{f(x + h) - f(x)}}}}{{\text{h}}} $
$ = \;\mathop {\lim }\limits_{{\text{h}} \to 0} \dfrac{{{\text{h(2x + h - 3)}}}}{{\text{h}}} $
$ = \;{\text{2x - 3}} $
(iii) \[\dfrac{{\text{1}}}{{{{\text{x}}^2}}}\]
उत्तर: \[{\text{f(x)}}\;{\text{ = }}\;\dfrac{{\text{1}}}{{{{\text{x}}^{\text{2}}}}}\]
\[{\text{f(x + h)}}\;{\text{ = }}\;\dfrac{{\text{1}}}{{{{{\text{(x + h)}}}^{\text{2}}}}}\]
\[{\text{f(x + h) - f(x)}}\;{\text{ = }}\;\dfrac{{\text{1}}}{{{{{\text{(x + h)}}}^{\text{2}}}}}{\text{ - }}\dfrac{{\text{1}}}{{{{\text{x}}^{\text{2}}}}}\]
= $ \dfrac{{{{\text{x}}^{\text{2}}}{\text{ - (x + h}}{{\text{)}}^{\text{2}}}}}{{{{\text{x}}^{\text{2}}}{{{\text{(x + h)}}}^{\text{2}}}}} $
$ = \;\dfrac{{{{\text{x}}^{\text{2}}}{\text{ - }}\left[ {{{\text{x}}^{\text{2}}}{\text{ + 2xh + }}{{\text{h}}^{\text{2}}}} \right]}}{{{{\text{x}}^{\text{2}}}{{{\text{(x + h)}}}^{\text{2}}}}} $
$ = \;\dfrac{{{\text{ - h(2x + h)}}}}{{{{\text{x}}^{\text{2}}}{{{\text{(x + h)}}}^{\text{2}}}}} $
\[{{\text{f}}^\prime}{\text{(x)}}\; = \;\mathop {\lim }\limits_{{\text{h}} \to 0} \dfrac{{{\text{f(x + h) - f(x)}}}}{{\text{h}}}\]
= \[\mathop {\lim }\limits_{{\text{h}} \to 0} \dfrac{{{\text{ - h(2x + h)}}}}{{{{\text{x}}^{\text{2}}}{{{\text{(x + h)}}}^{\text{2}}}{\text{h}}}}\; = \;\dfrac{{{\text{ - 2x}}}}{{{{\text{x}}^{\text{2}}}{{\text{x}}^{\text{2}}}}}\; = \;\dfrac{{{\text{ - 2}}}}{{{{\text{x}}^{\text{3}}}}}\]
(iv) \[\dfrac{{{\text{x + 1}}}}{{{\text{x - 1}}}}\]
उत्तर: \[{\text{f(x)}}\;{\text{ = }}\;\dfrac{{{\text{x + 1}}}}{{{\text{x - 1}}}}\]
\[{\text{f(x + h)}}\;{\text{ = }}\;\dfrac{{{\text{x + h + 1}}}}{{{\text{x + h - 1}}}}\]
\[{\text{f(x + h) - f(x)}}\;{\text{ = }}\;\dfrac{{{\text{x + h + 1}}}}{{{\text{x + h - 1}}}}{\text{ - }}\dfrac{{{\text{x + 1}}}}{{{\text{x - 1}}}}\;{\text{ = }}\;\dfrac{{{\text{ - 2h}}}}{{{\text{(x - 1)(x - 1 + h)}}}}\]
\[{{\text{f}}^\prime}{\text{(x)}}\; = \;\mathop {\lim }\limits_{{\text{h}} \to 0} \dfrac{{{\text{f(x + h) - f(x)}}}}{{\text{h}}}\]
= \[\mathop {\lim }\limits_{{\text{h}} \to 0} \dfrac{{{\text{ - 2h}}}}{{{\text{(x - 1)(x - 1 + h)h}}}}\; = \;\dfrac{{{\text{ - 2}}}}{{{{{\text{(x - 1)}}}^2}}}\]
5. फलन \[{\text{f(x)}}\;{\text{ = }}\;\dfrac{{{{\text{x}}^{{\text{100}}}}}}{{{\text{100}}}}{\text{ + }}\dfrac{{{{\text{x}}^{{\text{99}}}}}}{{{\text{99}}}}{{ + \dots }}..{\text{ + }}\dfrac{{{{\text{x}}^{\text{2}}}}}{{\text{2}}}{\text{ + x + 1}}\] के लिए सिद्ध कीजिए की \[{{\text{f}}^\prime}{\text{(1)}}\;{\text{ = }}\;{\text{100}}{{\text{f}}^\prime}{\text{(0)}}\]
उत्तर: \[\dfrac{{\text{d}}}{{{\text{dx}}}}{{\text{x}}^{\text{n}}}\;{\text{ = }}\;{\text{n}}{{\text{x}}^{{\text{n - 1}}}}\]
\[\text{f(x)}\text{ = }\dfrac{x^{100}}{100}+\dfrac{x^{99}}{99} + \dots..{\text{ + }}\dfrac{{{{\text{x}}^{\text{2}}}}}{{\text{2}}}{\text{ + x + 1}}\]
$ {{\text{f}}^\prime}{\text{(x)}}\;{\text{ = }}\;\dfrac{{{\text{100}}{{\text{x}}^{99}}}}{{{\text{100}}}}{\text{ + }}\dfrac{{{\text{99}}{{\text{x}}^{{\text{98}}}}}}{{{\text{99}}}}{{ + \dots }}..{\text{ + }}\dfrac{{{\text{2x}}}}{{\text{2}}}{\text{ + 1}} $
$ {\text{ = }}\;{{\text{x}}^{{\text{99}}}}{\text{ + }}{{\text{x}}^{{\text{98}}}}{\text{ + }}....{\text{ + x + 1}} $
जब \[{\text{x}}\;{\text{ = }}\;{\text{1}}\] , \[{{\text{f}}^\prime}(1)\; = \;1 + 1 + .... + 1\]
जब \[{\text{x}}\;{\text{ = }}\;0\] , \[{{\text{f}}^\prime}(0)\; = \;1\]
\[{{\text{f}}^\prime}(1)\; = \;100\]
\[{\text{100}}{{\text{f}}^\prime}(0)\; = \;100 \times 1\; = \;100\]
अतः बाया पक्ष = दाया पक्ष
6. किसी आचार वास्तविक संख्या \[{\text{a}}\] के लिए \[{{\text{x}}^{\text{n}}}{\text{ + a}}{{\text{x}}^{{\text{n - 1}}}}{\text{ + }}{{\text{a}}^{\text{2}}}{{\text{x}}^{{\text{n - 2}}}}{{ + \dots }}..{\text{ + }}{{\text{a}}^{{\text{n - 1}}}}{\text{x + }}{{\text{a}}^{\text{n}}}\] का अवकलज ज्ञात कीजिए।
उत्तर: \[\dfrac{{\text{d}}}{{{\text{dx}}}}{\text{[f(x)]}}\; = \;{{\text{f}}^\prime}{\text{(x)}}\]
$ \dfrac{{\text{d}}}{{{\text{dx}}}}{{\text{x}}^{\text{n}}}{\text{ = n}}{{\text{x}}^{{\text{n - 1}}}} $
$ {\text{f(x)}}\; = \;{{\text{x}}^{\text{n}}}{\text{ + a}}{{\text{x}}^{{\text{n - 1}}}}{\text{ + }}{{\text{a}}^{\text{2}}}{{\text{x}}^{{\text{n - 2}}}}{\text{ + }}......{\text{ + }}{{\text{a}}^{{\text{n - 1}}}}{\text{x + }}{{\text{a}}^{\text{n}}} $
$ {{\text{f}}^\prime }({\text{x}})\; = \;{\text{n}}{{\text{x}}^{{\text{n - 1}}}}{\text{ + (n - 1)a}}{{\text{x}}^{{\text{n - 2}}}}{\text{ + (n - 2)}}{{\text{a}}^{\text{2}}}{{\text{x}}^{{\text{n - 3}}}}{\text{ + }}......{\text{ + }}{{\text{a}}^{{\text{n - 1}}}} $
7. किन्ही अचरों \[{\text{a,}}\;{\text{b }}\] के लिए, अवकलज ज्ञात कीजिए:
(i) \[{\text{(x - a)(x - b)}}\]
उत्तर: \[{\text{f(x)}}\;{\text{ = }}\;{\text{(x - a)(x - b)}}\;{\text{ = }}\;{{\text{x}}^{\text{2}}}{\text{ - (a + b)x + ab}}\]
$ {{\text{f}}^\prime}{\text{(x)}}\;{\text{ = }}\;2{{\text{x}}^{{\text{2 - 1}}}}{\text{ - (a + b) + ab}} $
$ {\text{ = }}\;{\text{2x - (a + b)}} $
(ii) \[{{\text{(a}}{{\text{x}}^{\text{2}}}{\text{ + b)}}^{\text{2}}}\]
उत्तर: \[{\text{f(x)}}\;{\text{ = }}\;{{\text{(a}}{{\text{x}}^{\text{2}}}{\text{ + b)}}^{\text{2}}}\;{\text{ = }}\;{{\text{a}}^{\text{2}}}{{\text{x}}^{\text{4}}}{\text{ + 2ab}}{{\text{x}}^{\text{2}}}{\text{ + }}{{\text{b}}^{\text{2}}}\]
$ {{\text{f}}^\prime }{\text{(x)}}\; = \;{{\text{a}}^{\text{2}}}\left( {{\text{4}}{{\text{x}}^{\text{3}}}} \right){\text{ + 2ab(2x) + 0}} $
$ = \;{\text{4ax}}\left( {{\text{a}}{{\text{x}}^{\text{2}}}{\text{ + b}}} \right) $
(iii) \[\dfrac{{{\text{x - a}}}}{{{\text{x - b }}}}\]
उत्तर: \[{\text{f(x)}}\;{\text{ = }}\;\dfrac{{{\text{x - a}}}}{{{\text{x - b}}}}\;{\text{ = }}\;\dfrac{{\text{u}}}{{\text{v}}}\]
$ {\left( {\dfrac{{\text{u}}}{{\text{v}}}} \right)^\prime }\;{\text{ = }}\;\dfrac{{{{\text{u}}^\prime}{\text{v - u}}{{\text{v}}^\prime}}}{{{{\text{v}}^{\text{2}}}}} $
$ {{\text{f}}^\prime }({\text{x)}}\; = \;\;\dfrac{{{\text{1(x - b) - (x - a)1}}}}{{{{{\text{(x - b)}}}^{\text{2}}}}} $
$ {\text{ = }}\;\dfrac{{{\text{a - b}}}}{{{{{\text{(x - b)}}}^{\text{2}}}}} $
8. किसी आचार \[{\text{a}}\] के लिए \[\dfrac{{{{\text{x}}^{\text{n}}}{\text{ - }}{{\text{a}}^{\text{n}}}}}{{{\text{x - a}}}}\] का अवकलज ज्ञात कीजिए।
उत्तर: \[{\text{f(x)}}\;{\text{ = }}\;\dfrac{{{{\text{x}}^{\text{n}}}{\text{ - }}{{\text{a}}^{\text{n}}}}}{{{\text{x - a}}}}\;{\text{ = }}\;\dfrac{{\text{u}}}{{\text{v}}}\]
$ {\left( {\dfrac{{\text{u}}}{{\text{v}}}} \right)^\prime }\; = \;\dfrac{{{{\text{u}}^\prime}{\text{v - u}}{{\text{v}}^\prime}}}{{{{\text{v}}^{\text{2}}}}}{{\text{f}}^\prime }({\text{x}})\; $
$ = \;\dfrac{{{\text{n}}{{\text{x}}^{{\text{n - 1}}}}{\text{(x - a) - }}\left( {{{\text{x}}^{\text{n}}}{\text{ - }}{{\text{a}}^{\text{n}}}} \right){{ \times 1}}}}{{{{{\text{(x - a)}}}^{\text{2}}}}} $
$ {\text{ = }}\;\dfrac{{{\text{n}}{{\text{x}}^{\text{n}}}{\text{ - na}}{{\text{x}}^{{\text{n - 1}}}}{\text{ - }}{{\text{x}}^{\text{n}}}{\text{ + }}{{\text{a}}^{\text{n}}}}}{{{{{\text{(x - a)}}}^{\text{2}}}}} $
9. निम्नलिखित के अवकलज ज्ञात कीजिए:
(i) \[{\text{2x - }}\dfrac{3}{4}{\text{ }}\]
उत्तर: \[{\text{f(x)}}\;{\text{ = }}\;{\text{2x - }}\dfrac{{\text{3}}}{{\text{4}}}\]
\[{{\text{f}}^\prime}{\text{(x)}}\;{\text{ = }}\;{\text{2(1) - 0}}\;{\text{ = }}\;{\text{2}}\]
(ii) \[{\text{(5}}{{\text{x}}^{\text{3}}}{\text{ + 3x + 1)(x - 1)}}\]
उत्तर: \[{\text{f(x)}}\] = \[{\text{(5}}{{\text{x}}^{\text{3}}}{\text{ + 3x + 1)(x - 1)}}\]
$ \dfrac{{\text{d}}}{{{\text{dx}}}}{\text{(uv}})\; = \;{{\text{u}}^\prime }{\text{v}} + {\text{u}}{{\text{v}}^\prime } $
$ {{\text{f}}^\prime }({\text{x}})\; = \;\left( {{\text{15}}{{\text{x}}^{\text{2}}}{\text{ + 3}}} \right){\text{(x - 1) + }}\left( {{\text{5}}{{\text{x}}^{\text{3}}}{\text{ + 3x + 1}}} \right){\text{(1)}} $
$ = \;{\text{20}}{{\text{x}}^{\text{3}}}{\text{ - 15}}{{\text{x}}^{\text{2}}}{\text{ + 6x - 4}} $
(iii) \[{{\text{x}}^{ - 3}}{\text{(5 + 3x)}}\]
उत्तर: \[{\text{f(x)}}\] = \[{{\text{x}}^{ - 3}}{\text{(5 + 3x)}}\]
$ \dfrac{{\text{d}}}{{{\text{dx}}}}{\text{(uv}})\; = \;{{\text{u}}^\prime }{\text{v}} + {\text{u}}{{\text{v}}^\prime } $
$ {{\text{f}}^\prime }({\text{x}})\; = \;{\text{5( - 3)}}{{\text{x}}^{{\text{ - 3 - 1}}}}{\text{ + 3( - 2)}}{{\text{x}}^{{\text{ - 2 - 1}}}} $
$= \;{\text{ - 15}}{{\text{x}}^{{\text{ - 4}}}}{\text{ - 6}}{{\text{x}}^{{\text{ - 3}}}}$
$ = \;\dfrac{{{\text{ - 15}}}}{{{{\text{x}}^{\text{4}}}}}{\text{ - }}\dfrac{{\text{6}}}{{{{\text{x}}^{\text{3}}}}}{\text{ - }}\dfrac{{\text{3}}}{{{{\text{x}}^{\text{4}}}}}{\text{(5 + 2x)}} $
(iv) \[{{\text{x}}^5}{\text{(3 - 6}}{{\text{x}}^{ - 9}}{\text{)}}\]
उत्तर: \[{\text{f(x)}}\] = \[{{\text{x}}^5}{\text{(3 - 6}}{{\text{x}}^{ - 9}}{\text{)}}\] = \[{\text{3}}{{\text{x}}^{\text{5}}}{\text{ - 6}}{{\text{x}}^{{\text{ - 4}}}}\]
$ \dfrac{{\text{d}}}{{{\text{dx}}}}{\text{(uv)}}\; = \;{{\text{u}}^\prime }{\text{v}} + {\text{u}}{{\text{v}}^\prime } $
$ {{\text{f}}^\prime }({\text{x}})\; = \;1{\text{5}}{{\text{x}}^4}{\text{ + 24}}{{\text{x}}^{ - 5}} $
$ = \;{\text{15}}{{\text{x}}^{\text{4}}} + \dfrac{{24}}{{{{\text{x}}^5}}} $
(v) \[{{\text{x}}^{ - 4}}{\text{(3 - 4}}{{\text{x}}^{ - 5}}{\text{)}}\]
उत्तर: \[{\text{f(x)}}\] = \[{{\text{x}}^{ - 4}}{\text{(3 - 4}}{{\text{x}}^{ - 5}}{\text{)}}\] = \[{\text{3}}{{\text{x}}^{ - 4}}{\text{ - 4}}{{\text{x}}^{{\text{ - 9}}}}\]
$ \dfrac{{\text{d}}}{{{\text{dx}}}}{\text{(uv)}}\; = \;{{\text{u}}^\prime }{\text{v}} + {\text{u}}{{\text{v}}^\prime } $
$ {{\text{f}}^\prime }({\text{x}})\; = \;{\text{ - 12}}{{\text{x}}^{{\text{ - 5}}}}{\text{ + 36}}{{\text{x}}^{{\text{ - 10}}}} $
$ = \;{\text{ - }}\dfrac{{{\text{12}}}}{{{{\text{x}}^{\text{5}}}}}{\text{ + }}\dfrac{{{\text{36}}}}{{{{\text{x}}^{{\text{10}}}}}} $
(vi) \[\dfrac{{\text{2}}}{{{\text{x + 1}}}}{\text{ - }}\dfrac{{{{\text{x}}^{\text{2}}}}}{{{\text{3x - 1}}}}\]
उत्तर: \[{\text{f(x)}}\] = \[\dfrac{{\text{2}}}{{{\text{x + 1}}}}{\text{ - }}\dfrac{{{{\text{x}}^{\text{2}}}}}{{{\text{3x - 1}}}}\]
$ {\left( {\dfrac{{\text{u}}}{{\text{v}}}} \right)^\prime }\; = \;\dfrac{{{{\text{u}}^\prime}{\text{v - u}}{{\text{v}}^\prime}}}{{{{\text{v}}^{\text{2}}}}} $
$ {{\text{f}}^\prime }{\text{(x)}}\; = \;\dfrac{{{\text{(0 - 2)} \times 1}}}{{{{{\text{(x + 1)}}}^{\text{2}}}}}{\text{ - }}\dfrac{{{\text{2x(3x - 1) - }}{{\text{x}}^{\text{2}}}{{ \times\; 3}}}}{{{{{\text{(3x - 1)}}}^{\text{2}}}}} $
$ {\text{ = }}\;\dfrac{{{\text{ - 2}}}}{{{{{\text{(x + 1)}}}^{\text{2}}}}}{\text{ - }}\dfrac{{{\text{6}}{{\text{x}}^{\text{2}}}{\text{ - 2x - 3}}{{\text{x}}^{\text{2}}}}}{{{{{\text{(3x - 1)}}}^{\text{2}}}}} $
$ {\text{ = }}\;\dfrac{{{\text{ - 2}}}}{{{{{\text{(x + 1)}}}^{\text{2}}}}}{\text{ - }}\dfrac{{{\text{3}}{{\text{x}}^{\text{2}}}{\text{ - 2x}}}}{{{{{\text{(3x - 1)}}}^{\text{2}}}}} $
10. प्रथम सिद्धांत से \[{\text{cosx}}\] का अवकलज कीजिए।
उत्तर: \[{\text{f(x)}}\] = \[{\text{cosx}}\]
\[{\text{f(x + h)}}\;{\text{ = }}\;{\text{cos(x + h)}}\]
$ = \;{\text{ - 2sin}}\dfrac{{{\text{x + h + x}}}}{{\text{2}}}{\text{sin}}\dfrac{{{\text{x + h - x}}}}{{\text{2}}} $
$ = \;{\text{ - 2sin}}\left( {{\text{x + }}\dfrac{{\text{h}}}{{\text{2}}}} \right){\text{sin}}\dfrac{{\text{h}}}{{\text{2}}} $
$ {{\text{f}}^\prime }({\text{x}})\; = \;\mathop {\lim }\limits_{{\text{h}} \to 0} \dfrac{{{\text{f(x + h) - f(x)}}}}{{\text{h}}} $
$ = \;\mathop {\lim }\limits_{{\text{h}} \to 0} \dfrac{{{\text{ - 2sin}}\left( {{\text{x + }}\dfrac{{\text{h}}}{{\text{2}}}} \right){\text{sin}}\dfrac{{\text{h}}}{{\text{2}}}}}{{\text{h}}} $
$ = \;\mathop {\lim }\limits_{{\text{h}} \to 0} \left[ {{\text{ - sin}}\left( {{\text{x + }}\dfrac{{\text{h}}}{{\text{2}}}} \right)} \right]\left[ {\dfrac{{{\text{sin}}\dfrac{{\text{h}}}{{\text{2}}}}}{{\dfrac{{\text{h}}}{{\text{2}}}}}} \right] $
$ = \;{\text{ - sinx}} $
अतः \[\dfrac{{\text{d}}}{{{\text{dx}}}}{\text{cosx}}\;{\text{ = }}\;{\text{ - sinx}}\]
11. निम्नलिखित फलनों के अवकलज ज्ञात कीजिए:
(i) \[{\text{sinx cosx}}\]
उत्तर: \[{\text{f(x)}}\] = \[{\text{sinx cosx}}\]
\[\dfrac{{\text{d}}}{{{\text{dx}}}}{\text{(uv)}}\;{\text{ = }}\;{{\text{u}}^\prime}{\text{v + u}}{{\text{v}}^\prime}\]
$ \dfrac{{\text{d}}}{{{\text{dx}}}}{\text{(sinxcosx)}}\; = \;\left( {\dfrac{{\text{d}}}{{{\text{dx}}}}{\text{sinx}}} \right){\text{cosx + sinx}}\dfrac{{\text{d}}}{{{\text{dx}}}}{\text{(cosx)}} $
$ = \;{\text{cosxcosx + sinx( - sinx)}} $
$ = \;{\text{co}}{{\text{s}}^{\text{2}}}{\text{x - si}}{{\text{n}}^{\text{2}}}{\text{x}} = \;{\text{cos2x}} $
(ii) \[{\text{secx}}\]
उत्तर: \[{\text{f(x)}}\] = \[{\text{secx}}\]
\[{\text{f(x + h)}}\;{\text{ = }}\;{\text{sec(x + h)}}\]
\[{\text{f(x + h) - f(x)}}\;{\text{ = }}\;{\text{sec(x + h) - secx}}\]
= \[\dfrac{{\text{1}}}{{{\text{cos(x + h)}}}}{\text{ - }}\dfrac{{\text{1}}}{{{\text{cosx}}}}\]
$ = \;\dfrac{{{\text{cosx - cos(x + h)}}}}{{{\text{cos(x + h)cosx}}}} $
$ = \;\dfrac{{{\text{2sin}}\left( {{\text{x + }}\dfrac{{\text{h}}}{{\text{2}}}} \right){\text{sin}}\left( {\dfrac{{\text{h}}}{{\text{2}}}} \right)}}{{{\text{hcos(x + h)cosx}}}} $
$ {{\text{f}}^\prime }({\text{x}})\; = \;\mathop {\lim }\limits_{{\text{h}} \to 0} \dfrac{{{\text{f(x + h) - f(x)}}}}{{\text{h}}} $
$ = \;\mathop {\lim }\limits_{{\text{h}} \to 0} \dfrac{{{\text{sin}}\left( {{\text{x + }}\dfrac{{\text{h}}}{{\text{2}}}} \right)}}{{{\text{cos(x + h)cosx}}}}\left( {\dfrac{{{\text{sin}}\dfrac{{\text{h}}}{{\text{2}}}}}{{\dfrac{{\text{h}}}{{\text{2}}}}}} \right) $
$ = \;\dfrac{{{\text{sinx}}}}{{{\text{cosxcosx}}}} $
$ = \;\dfrac{{\text{1}}}{{{\text{cosx}}}}\dfrac{{{\text{sinx}}}}{{{\text{cosx}}}} $
$ = \;{\text{secxtanx}} $
(iii) \[{\text{5secx + 4cosx }}\]
उत्तर: \[{\text{f(x)}}\] = \[{\text{5secx + 4cosx }}\]
$ \dfrac{{\text{d}}}{{{\text{dx}}}}{\text{(secx)}}\; = \;{\text{secxtanx}} $
$ \dfrac{{\text{d}}}{{{\text{dx}}}}{\text{(cosx}})\; = \;{\text{ - sinx}} $
$ {{\text{f}}^\prime }({\text{x)}}\; = \;{\text{5}}\dfrac{{\text{d}}}{{{\text{dx}}}}{\text{(secx) + 4}}\dfrac{{\text{d}}}{{{\text{dx}}}}{\text{(cosx)}} $
$ = \;{\text{5secx tanx - 4sinx}} $
(iv) \[{\text{cosecx}}\]
उत्तर: \[{\text{f(x)}}\] = \[{\text{cosecx}}\]
\[{\text{f(x + h)}}\;{\text{ = }}\;{\text{cosec(x + h)}}\]
\[{\text{f(x + h) - f(x)}}\;{\text{ = }}\;{\text{cosec(x + h) - cosecx}}\]
$ = \;\dfrac{{\text{1}}}{{{\text{sin(x + h)}}}}{\text{ - }}\dfrac{{\text{1}}}{{{\text{sinx}}}} $
$ = \;\dfrac{{{\text{sinx - sin(x + h)}}}}{{{\text{sin(x + h)sinx}}}} $
$ = \;\dfrac{{{\text{ - 2cos}}\left( {{\text{x + }}\dfrac{{\text{h}}}{{\text{2}}}} \right){\text{sin}}\left( {\dfrac{{\text{h}}}{{\text{2}}}} \right)}}{{{\text{sin(x + h)sinx}}}} $
$ {{\text{f}}^\prime }({\text{x}})\; = \;\mathop {\lim }\limits_{{\text{h}} \to 0} \dfrac{{{\text{f(x + h) - f(x)}}}}{{\text{h}}} $
\[ = \;\mathop {\lim }\limits_{{\text{h}} \to 0} \dfrac{{{\text{ - cos}}\left( {{\text{x + }}\dfrac{{\text{h}}}{{\text{2}}}} \right)}}{{{\text{sin(x + h)sinx}}}}\left( {\dfrac{{{\text{sin}}\dfrac{{\text{h}}}{{\text{2}}}}}{{\dfrac{{\text{h}}}{{\text{2}}}}}} \right)\]
$ = \;\dfrac{{{\text{ - cosx}}}}{{{\text{sinxsinx}}}}{\text{(1)}} $
$ = \;{\text{ - cosecxcotx}} $
(v) \[{\text{3cotx + 5cosecx}}\]
उत्तर: \[{\text{f(x)}}\] = \[{\text{cotx}}\]
\[{\text{f(x + h)}}\;{\text{ = }}\;{\text{cot(x + h)}}\]
\[{\text{f(x + h) - f(x)}}\;{\text{ = }}\;{\text{cot(x + h) - cotx}}\]
$ = \;\dfrac{{{\text{cos(x + h)}}}}{{{\text{sin(x + h)}}}}{\text{ - }}\dfrac{{{\text{cosx}}}}{{{\text{sinx}}}} $
$ = \;{\text{ - }}\dfrac{{{\text{sinh}}}}{{{\text{sin(x + h)sinx}}}} $
$ {{\text{f}}^\prime }({\text{x}})\; = \;\mathop {\lim }\limits_{{\text{h}} \to 0} \dfrac{{{\text{f(x + h) - f(x)}}}}{{\text{h}}} $
$ = \;\mathop {\lim }\limits_{{\text{h}} \to 0} \dfrac{{\text{1}}}{{\text{h}}}\left[ {{\text{ - }}\dfrac{{{\text{sinh}}}}{{{\text{sin(x + h)sinx}}}}} \right] $
$ = \;{\text{ - 1}}\left( {\dfrac{{\text{1}}}{{{\text{sinxsinx}}}}} \right) $
= \[{\text{ - cose}}{{\text{c}}^{\text{2}}}{\text{x}}\]
${{\text{f}}^\prime }{\text{(x)}}\; = \;{\text{3}}\dfrac{{\text{d}}}{{{\text{dx}}}}{\text{cotx + 5}}\dfrac{{\text{d}}}{{{\text{dx}}}}{\text{cosecx}}\; $
$ {\text{ = }}\;{\text{ - 3cose}}{{\text{c}}^{\text{2}}}{\text{x - 5cosecxcotx}} $
(vi) \[{\text{5sinx - 6cosx + 7}}\]
उत्तर: \[{\text{f(x)}}\] = \[{\text{5sinx - 6cosx + 7}}\]
$ {{\text{f}}^\prime }({\text{x}})\; = \;{\text{5}}\dfrac{{\text{d}}}{{{\text{dx}}}}{\text{sinx - 6}}\dfrac{{\text{d}}}{{{\text{dx}}}}{\text{cosx + }}\dfrac{{\text{d}}}{{{\text{dx}}}}{\text{(7)}} $
$ = \;{\text{5cosx + 6sinx}} $
(vii) \[{\text{2tanx - 7secx }}\]
उत्तर: \[{\text{f(x)}}\] = \[{\text{2tanx - 7secx }}\]
$ \dfrac{{\text{d}}}{{{\text{dx}}}}{\text{secx}}\;{\text{ = }}\;{\text{secxtanx}} $
$ \dfrac{{\text{d}}}{{{\text{dx}}}}{\text{(tanx)}}\; = \;\mathop {\lim }\limits_{{\text{h}} \to 0} \dfrac{{{\text{tan(x + h) - tanx}}}}{{\text{h}}} $
$ = \;\mathop {\lim }\limits_{{\text{h}} \to 0} \dfrac{{\text{1}}}{{\text{h}}}\left[ {\dfrac{{{\text{sin(x + h)}}}}{{{\text{cos(x + h)}}}}{\text{ - }}\dfrac{{{\text{sinx}}}}{{{\text{cosx}}}}} \right] $
$ = \;\dfrac{{\text{1}}}{{{\text{cosxcosx}}}} $
$ = \;{\text{se}}{{\text{c}}^{\text{2}}}{\text{x}} $
$ {{\text{f}}^\prime }({\text{x}})\; = \;{\text{2}}\dfrac{{\text{d}}}{{{\text{dx}}}}{\text{tanx - 7}}\dfrac{{\text{d}}}{{{\text{dx}}}}{\text{secx}} $
$ = \;{\text{2se}}{{\text{c}}^{\text{2}}}{\text{x - 7secxtanx}} $
प्रश्नावली A 1.3
1. प्रथम सिद्धांत से निम्नलिखित फलनों का अवकलन ज्ञात कीजिए (यह समझ जाए कि \[{\text{a,b,c,d,p,q,r,s}}\] निश्चित शुन्यतर अचर है \[{\text{m}}\] और \[{\text{n}}\] तथा पूर्णांक है।)
(i) \[{\text{ - x}}\]
उत्तर: माना कि \[{\text{f(x)}}\] = \[{\text{ - x}}\]
\[{\text{f(x + h)}}\;{\text{ = }}\;{\text{ - (x + h) - x - h}}\]
$ \dfrac{{{\text{d( - x)}}}}{{{\text{dx}}}}\; = \;\mathop {\lim }\limits_{{\text{h}} \to 0} \dfrac{{{\text{f(x + h) - f(x)}}}}{{\text{h}}} $
$ = \;\mathop {\lim }\limits_{{\text{h}} \to 0} \dfrac{{{\text{ - x - h + x}}}}{{\text{h}}}\; = \; - 1 $
(ii) \[{{\text{( - x)}}^{ - 1}}\]
उत्तर: माना कि \[{\text{f(x)}}\] = \[{{\text{( - x)}}^{ - 1}}\] = \[{\text{ - }}\dfrac{{\text{1}}}{{\text{x}}}\]
\[{\text{f(x + h)}}\;{\text{ = }}\;{\text{ - }}\dfrac{{\text{1}}}{{{\text{x + h}}}}\]
$ {\text{f(x + h) - f(x)}}\;{\text{ = }}\;{\text{ - }}\dfrac{{\text{1}}}{{{\text{x + h}}}}{\text{ - ( - }}\dfrac{{\text{1}}}{{\text{x}}}{\text{)}} $
$ {\text{ = }}\;\dfrac{{{\text{ - x + x + h}}}}{{{\text{(x + h)x}}}}\;{\text{ = }}\;\dfrac{{\text{h}}}{{{\text{x(x + h)}}}} $
\[\dfrac{{{\text{d(( - x}}{{\text{)}}^{{\text{ - 1}}}}{\text{)}}}}{{{\text{dx}}}}\; = \;\mathop {\lim }\limits_{{\text{h}} \to 0} \dfrac{{{\text{f(x + h) - f(x)}}}}{{\text{h}}}\; = \;\mathop {\lim }\limits_{{\text{h}} \to 0} \dfrac{{\text{h}}}{{{\text{hx(x + h)}}}}\; = \;\dfrac{{\text{1}}}{{{{\text{x}}^{\text{2}}}}}\]
(iii) \[{\text{sin(x + 1)}}\]
उत्तर: माना कि \[{\text{f(x)}}\] = \[{\text{sin(x + 1)}}\]
\[{\text{f(x + h)}}\;{\text{ = }}\;{\text{sin(x + h + 1)}}\]
$ {\text{f(x + h) - f(x)}}\;{\text{ = }}\;{\text{sin(x + h + 1) - sin(x + 1)}} $
$ {\text{ = }}\;{\text{2cos(x + 1 + }}\dfrac{{\text{h}}}{{\text{2}}}{\text{)sin(}}\dfrac{{\text{h}}}{{\text{2}}}{\text{)}} $
$ {{\text{f}}^\prime}({\text{x)}}\; = \;\mathop {\lim }\limits_{{\text{h}} \to 0} \dfrac{{{\text{f(x + h) - f(x)}}}}{{\text{h}}}\; = \;\mathop {\lim }\limits_{{\text{h}} \to 0} \dfrac{1}{{\text{h}}}2\operatorname{c} {\text{os(x + 1 + }}\dfrac{{\text{h}}}{{\text{2}}}{\text{)sin(}}\dfrac{{\text{h}}}{{\text{2}}}{\text{)}} $
$ {\text{ = }}\;\mathop {\lim }\limits_{{\text{h}} \to 0} \operatorname{c} {\text{os(x + 1 + }}\dfrac{{\text{h}}}{{\text{2}}}{\text{)sin(}}\dfrac{{\text{h}}}{{\text{2}}}{\text{)}} $
$ = \;\mathop {\lim }\limits_{{\text{h}} \to 0} \operatorname{c} {\text{os(x + 1 + }}\dfrac{{\text{h}}}{{\text{2}}}{\text{)sin(}}\dfrac{{\dfrac{{\text{h}}}{{\text{2}}}}}{{\dfrac{{\text{h}}}{{\text{2}}}}}{\text{)}}\;{\text{ = }}\;{\text{cos(x + 1)}}$
$ {\text{(}}\because \;{\text{sin(}}\dfrac{{\dfrac{{\text{h}}}{{\text{2}}}}}{{\dfrac{{\text{h}}}{{\text{2}}}}}{\text{)}}\; = \;1) $
(iv) \[{\text{cos(x - }}\dfrac{{{\pi }}}{{\text{8}}}{\text{)}}\]
उत्तर: माना कि \[{\text{f(x)}}\] = \[{\text{cos(x - }}\dfrac{{{\pi }}}{{\text{8}}}{\text{)}}\]
\[{\text{f(x + h)}}\] = \[{\text{cos(x + h - }}\dfrac{{{\pi }}}{{\text{8}}}{\text{)}}\]
$ {\text{f(x + h) - f(x)}}\;{\text{ = }}\;{\text{cos(x + h - }}\dfrac{{{\pi }}}{{\text{8}}}{\text{) - cos(x - }}\dfrac{{{\pi }}}{{\text{8}}}{\text{)}} $
$ {\text{ = }}\;{\text{ - 2sin(x - }}\dfrac{{{\pi }}}{{\text{8}}}{\text{ + }}\dfrac{{\text{h}}}{{\text{2}}}{\text{)sin}}\dfrac{{\text{h}}}{{\text{2}}} $
$ {{\text{f}}^\prime}({\text{x)}}\; = \;\mathop {\lim }\limits_{{\text{h}} \to 0} \dfrac{{{\text{f(x + h) - f(x)}}}}{{\text{h}}} $
$ = \;\mathop {\lim }\limits_{{\text{h}} \to 0} \dfrac{{{\text{ - 2sin(x - }}\dfrac{{{\pi }}}{{\text{8}}}{\text{ + }}\dfrac{{\text{h}}}{{\text{2}}}{\text{)sin}}\dfrac{{\text{h}}}{{\text{2}}}}}{{\text{h}}} $
$ = \;\mathop {\lim }\limits_{{\text{h}} \to 0} ( - \sin {\text{(x - }}\dfrac{{{\pi }}}{{\text{8}}}{\text{ + }}\dfrac{{\text{h}}}{{\text{2}}}{\text{)(sin}}\dfrac{{\dfrac{{\text{h}}}{{\text{2}}}}}{{\dfrac{{\text{h}}}{{\text{2}}}}}{\text{))}} $
$ {\text{ = }}\; - \sin {\text{(x - }}\dfrac{{{\pi }}}{{\text{8}}})\;\;\;(\because \;{\text{(sin}}\dfrac{{\dfrac{{\text{h}}}{{\text{2}}}}}{{\dfrac{{\text{h}}}{{\text{2}}}}}{\text{)}}\; = \;1) $
2. \[{\text{(x + a)}}\]
उत्तर: \[\dfrac{{{\text{d(x + a)}}}}{{{\text{dx}}}}\;{\text{ = }}\;\dfrac{{{\text{d(x)}}}}{{{\text{dx}}}}{\text{ + }}\dfrac{{{\text{d(a)}}}}{{{\text{dx}}}}\;{\text{ = }}\;{\text{1 + 0}}\;{\text{ = }}\;{\text{1}}\]
3. \[{\text{(px + q)(}}\dfrac{{\text{r}}}{{\text{x}}}{\text{ + s)}}\]
उत्तर: \[{{\text{(uv)}}^\prime}\; = \;{{\text{u}}^\prime}{\text{v + u}}{{\text{v}}^\prime}\]
\[{{\text{f}}^\prime}({\text{x)}}\; = \;\dfrac{{{\text{d(px + q)}}}}{{{\text{dx}}}}.{\text{(}}\dfrac{{\text{r}}}{{\text{x}}}{\text{ + s) + (px + q)}}\dfrac{{\text{d}}}{{{\text{dx}}}}{\text{(}}\dfrac{{\text{r}}}{{\text{x}}}{\text{ + s)}}\]
$ {\text{ = }}\;{\text{p}}{\text{.(}}\dfrac{{\text{r}}}{{\text{x}}}{\text{ + s) + (px + q)( - }}\dfrac{{\text{r}}}{{{{\text{x}}^{\text{2}}}}}{\text{)}} $
$ \dfrac{{{\text{pr}}}}{{\text{x}}}{\text{ + ps - }}\dfrac{{{\text{pr}}}}{{\text{x}}}{\text{ - }}\dfrac{{{\text{qr}}}}{{{{\text{x}}^{\text{2}}}}}\;{\text{ = }}\;{\text{ps - }}\dfrac{{{\text{qr}}}}{{{{\text{x}}^{\text{2}}}}} $
4. \[{\text{(ax + b)(cx + d}}{{\text{)}}^2}\]
उत्तर: \[\dfrac{{\text{d}}}{{{\text{dx}}}}{\text{[(ax + b)(cx + d}}{{\text{)}}^{\text{2}}}{\text{]}}\;{\text{ = }}\;\dfrac{{\text{d}}}{{{\text{dx}}}}{\text{[(ax + b)](cx + d}}{{\text{)}}^{\text{2}}}{\text{ + (ax + b)}}\dfrac{{\text{d}}}{{{\text{dx}}}}{\text{[(cx + d}}{{\text{)}}^{\text{2}}}{\text{]}}\]
$ {\text{ = }}\;{\text{a(cx + d}}{{\text{)}}^{\text{2}}}{\text{ + (ax + b)2c(cx + d)}} $
$ {\text{ = }}\;{\text{2c(ax + b)(cx + d) + a(cx + d}}{{\text{)}}^{\text{2}}} $
5. \[\dfrac{{{\text{(ax + b)}}}}{{{\text{(cx + d)}}}}\]
उत्तर: \[{\text{f(x)}}\] = \[\dfrac{{{\text{(ax + b)}}}}{{{\text{(cx + d)}}}}\]
$ {(\dfrac{{\text{u}}}{{\text{v}}})^\prime}\; = \;\dfrac{{{{\text{u}}^\prime}{\text{v - u}}{{\text{v}}^\prime}}}{{{{\text{v}}^{\text{2}}}}}\; $
$ = \;\dfrac{{\dfrac{{\text{d}}}{{{\text{dx}}}}{\text{[ax + b](cx + d) - (ax + b)}}\dfrac{{\text{d}}}{{{\text{dx}}}}{\text{[cx + d]}}}}{{{{{\text{(cx + d)}}}^{\text{2}}}}} $
$ = \;\dfrac{{{\text{a(cx + d) - (ax + b)c}}}}{{{{{\text{(cx + d)}}}^{\text{2}}}}} $
$ = \;\dfrac{{{\text{acx + ad - acx - bc}}}}{{{{{\text{(cx + d)}}}^{\text{2}}}}} $
$ = \;\dfrac{{{\text{ad - bc}}}}{{{{{\text{(cx + d)}}}^{\text{2}}}}} $
6. \[\dfrac{{{\text{1 + }}\dfrac{{\text{1}}}{{\text{x}}}}}{{{\text{1 - }}\dfrac{{\text{1}}}{{\text{x}}}}}\]
उत्तर: \[{\text{f(x)}}\] = \[\dfrac{{{\text{1 + }}\dfrac{{\text{1}}}{{\text{x}}}}}{{{\text{1 - }}\dfrac{{\text{1}}}{{\text{x}}}}}\] = \[\dfrac{{{\text{x + 1}}}}{{{\text{x - 1}}}}\]
\[ = \;\dfrac{{\dfrac{{\text{d}}}{{{\text{dx}}}}{\text{[x + 1](x - 1) - (x + 1)}}\dfrac{{\text{d}}}{{{\text{dx}}}}{\text{[x - 1]}}}}{{{{{\text{(x + 1)}}}^{\text{2}}}}}\] \[{\text{ = }}\;\dfrac{{{\text{1(x - 1) - (x + 1)1}}}}{{{{{\text{(x - 1)}}}^{\text{2}}}}}\] \[{\text{ = }}\;\dfrac{{{\text{ - 2}}}}{{{{{\text{(x - 1)}}}^{\text{2}}}}}\]
7. \[\dfrac{{\text{1}}}{{{\text{a}}{{\text{x}}^{\text{2}}}{\text{ + bx + c}}}}\]
उत्तर: \[{{\text{f}}^\prime}({\text{x)}} = \;\dfrac{{\dfrac{{\text{d}}}{{{\text{dx}}}}{\text{[1](a}}{{\text{x}}^2}{\text{ + bx + c) - (1)}}\dfrac{{\text{d}}}{{{\text{dx}}}}{\text{[a}}{{\text{x}}^2}{\text{ + bx + c]}}}}{{{{{\text{(a}}{{\text{x}}^2}{\text{ + bx + c)}}}^{\text{2}}}}}\]
$ {\text{ = }}\;\dfrac{{{\text{0(a}}{{\text{x}}^{\text{2}}}{\text{ + bx + c) - (2ax + b)}}}}{{{{{\text{(a}}{{\text{x}}^{\text{2}}}{\text{ + bx + c)}}}^{\text{2}}}}} $
$ {\text{ = }}\;\dfrac{{{\text{ - (2ax + b)}}}}{{{{{\text{(a}}{{\text{x}}^{\text{2}}}{\text{ + bx + c)}}}^{\text{2}}}}} $
8. \[\dfrac{{{\text{ax + b}}}}{{{\text{p}}{{\text{x}}^{\text{2}}}{\text{ + qx + r}}}}\]
उत्तर: \[{\text{f(x)}}\] = \[\dfrac{{{\text{ax + b}}}}{{{\text{p}}{{\text{x}}^{\text{2}}}{\text{ + qx + r}}}}\]
$ {{\text{f}}^{{\prime}}}{\text{(x) = }}\;\dfrac{{\dfrac{{\text{d}}}{{{\text{dx}}}}{\text{[ax + b](p}}{{\text{x}}^{\text{2}}}{\text{ + qx + r) - (ax + b)}}\dfrac{{\text{d}}}{{{\text{dx}}}}{\text{[p}}{{\text{x}}^{\text{2}}}{\text{ + qx + r]}}}}{{{{{\text{(p}}{{\text{x}}^{\text{2}}}{\text{ + qx + r)}}}^{\text{2}}}}}{\text{ = }}\;\dfrac{{{\text{a(p}}{{\text{x}}^{\text{2}}}{\text{ + qx + r) - (ax + b)(2px + q)}}}}{{{{{\text{(p}}{{\text{x}}^{\text{2}}}{\text{ + qx + r)}}}^{\text{2}}}}} $
$ {\text{ = }}\;\dfrac{{{\text{(ap}}{{\text{x}}^{\text{2}}}{\text{ + aqx + ar)-(2ap}}{{\text{x}}^{\text{2}}}{\text{ + (aq + 2bp)x + bq)}}}}{{{{{\text{(p}}{{\text{x}}^{\text{2}}}{\text{ + qx + r)}}}^{\text{2}}}}} $
$ {\text{ = }}\;\dfrac{{{\text{ - ap}}{{\text{x}}^{\text{2}}}{\text{ + ar - 2bpx - bq}}}}{{{{{\text{(p}}{{\text{x}}^{\text{2}}}{\text{ + qx + r)}}}^{\text{2}}}}} $
9. \[\dfrac{{{\text{p}}{{\text{x}}^{\text{2}}}{\text{ + qx + r}}}}{{{\text{ax + b}}}}\]
उत्तर: \[{\text{f(x)}}\] = \[\dfrac{{{\text{p}}{{\text{x}}^{\text{2}}}{\text{ + qx + r}}}}{{{\text{ax + b}}}}\]
$ {{\text{f}}^{{\prime}}}{\text{(x) = }}\;-\dfrac{{\dfrac{{\text{d}}}{{{\text{dx}}}}{\text{[p}}{{\text{x}}^{\text{2}}}{\text{ + qx + r](ax + b) + (p}}{{\text{x}}^{\text{2}}}{\text{ + qx + r)}}\dfrac{{\text{d}}}{{{\text{dx}}}}{\text{[ax + b]}}}}{{{{{\text{(ax + b)}}}^{\text{2}}}}}{\text{ = }}\;\dfrac{{{\text{ - a(p}}{{\text{x}}^{\text{2}}}{\text{ + qx + r) + (ax + b)(2px + q)}}}}{{{{{\text{(ax + b)}}}^{\text{2}}}}} $
$ {\text{ = }}\;\dfrac{{{\text{2ap}}{{\text{x}}^{\text{2}}}{\text{ + 2bpx + aqx + bq - ap}}{{\text{x}}^{\text{2}}}{\text{ - aqx - ar}}}}{{{{{\text{(ax + b)}}}^{\text{2}}}}} $
$ {\text{ = }}\;\dfrac{{{\text{ap}}{{\text{x}}^{\text{2}}}{\text{ - ar + 2bpx + bq}}}}{{{{{\text{(ax + b)}}}^{\text{2}}}}} $
10. \[\dfrac{{\text{a}}}{{{{\text{x}}^{\text{4}}}}}{\text{ + }}\dfrac{{\text{b}}}{{{{\text{x}}^{\text{2}}}}}{\text{ + cosx}}\]
उत्तर: \[{\text{f(x)}}\] = \[\dfrac{{\text{a}}}{{{{\text{x}}^{\text{4}}}}}{\text{ + }}\dfrac{{\text{b}}}{{{{\text{x}}^{\text{2}}}}}{\text{ + cosx}}\]
= \[{\text{a}}{{\text{x}}^{{\text{ - 4}}}}{\text{ + b}}{{\text{x}}^{{\text{ - 2}}}}{\text{ + cosx}}\]
$ {{\text{f}}^{{\prime}}}{\text{(x)}}\;{\text{ = }}\;\dfrac{{\text{d}}}{{{\text{dx}}}}{\text{(a}}{{\text{x}}^{{\text{ - 4}}}}{\text{) - }}\dfrac{{\text{d}}}{{{\text{dx}}}}{\text{(b}}{{\text{x}}^{{\text{ - 2}}}}{\text{) + }}\dfrac{{\text{d}}}{{{\text{dx}}}}{\text{(cosx)}} $
$ {\text{ = }}\;{\text{ - 4a}}{{\text{x}}^{{\text{ - 5}}}}{\text{ - b( - 2)}}{{\text{x}}^{{\text{ - 3}}}}{\text{ - sinx}} $
$ {\text{ = }}\;\dfrac{{{\text{4a}}}}{{{{\text{x}}^{\text{5}}}}}{\text{ + }}\dfrac{{{\text{2b}}}}{{{{\text{x}}^{\text{3}}}}}{\text{ - sinx}} $
11. \[{\text{4}}\sqrt {\text{x}} {\text{ - 2}}\]
उत्तर: \[{\text{f(x)}}\] = \[{\text{4}}\sqrt {\text{x}} {\text{ - 2}}\]
$ {{\text{f}}^{{\prime}}}{\text{(x)}}\;{\text{ = }}\;\dfrac{{\text{d}}}{{{\text{dx}}}}{\text{(4}}\sqrt {\text{x}} {\text{) - }}\dfrac{{\text{d}}}{{{\text{dx}}}}{\text{(2)}} $
$ {\text{ = }}\;{\text{4}}{\text{.}}\dfrac{{\text{1}}}{{{\text{2}}\sqrt {\text{x}} }}{\text{ - 0}}\;{\text{ = }}\;\dfrac{{\text{2}}}{{\sqrt {\text{x}} }} $
$ {\text{(}}\because \;\dfrac{{\text{d}}}{{{\text{dx}}}}{\text{(}}\sqrt {\text{x}} {\text{)}}\;{\text{ = }}\;\dfrac{{\text{1}}}{{{\text{2}}\sqrt {\text{x}} }}{\text{)}} $
12. \[{{\text{(ax + b)}}^{\text{n}}}\]
उत्तर: \[{\text{f(x)}}\] = \[{{\text{(ax + b)}}^{\text{n}}}\]
$ {{\text{f}}^{{\prime}}}{\text{(x)}}\;{\text{ = }}\;{\text{n(ax + b}}{{\text{)}}^{{\text{n - 1}}}}\dfrac{{\text{d}}}{{{\text{dx}}}}{\text{(ax + b)}}$
$ {\text{ = }}\;{\text{n(ax + b}}{{\text{)}}^{{\text{n - 1}}}}{\text{a}} $
13. \[{{\text{(ax + b)}}^{\text{n}}}{\text{.(cx + d}}{{\text{)}}^{\text{n}}}\]
उत्तर: \[{\text{f(x)}}\] = \[{{\text{(ax + b)}}^{\text{n}}}{\text{.(cx + d}}{{\text{)}}^{\text{n}}}\]
$ {{\text{f}}^{{\prime}}}{\text{(x) = }}\;\dfrac{{\text{d}}}{{{\text{dx}}}}{\text{[(ax + b}}{{\text{)}}^{\text{n}}}{\text{][(cx + d}}{{\text{)}}^{\text{m}}}{\text{] + (ax + b}}{{\text{)}}^{\text{n}}}{\text{ + }}\dfrac{{\text{d}}}{{{\text{dx}}}}{\text{[(cx + d}}{{\text{)}}^{\text{m}}}{\text{]}} $
$ {\text{ = }}\;{\text{na(ax + b}}{{\text{)}}^{{\text{n - 1}}}}{{\text{(cx + d)}}^{{\text{m - 1}}}}{\text{ + (ax + b}}{{\text{)}}^{\text{n}}}{\text{mc(cx + d}}{{\text{)}}^{{\text{m - 1}}}} $
$ {\text{ = }}\;{{\text{(ax + b)}}^{{\text{n - 1}}}}{{\text{(cx + d)}}^{{\text{m - 1}}}}{\text{[na(cx + d) + mc(ax + b)]}} $
14. \[{\text{sin(x + a)}}\]
उत्तर: \[{\text{f(x)}}\] = \[{\text{sin(x + a)}}\]
माना \[{\text{x + a}}\;{\text{ = }}\;{\text{u}}\]
\[{\text{f(x)}}\] = \[{\text{sin(u)}}\]
\[{\text{x}}\] के सापेक्ष अवकलन करने पर
$ {{\text{f}}^\prime}({\text{x)}}\;{\text{ = }}\;\dfrac{{\text{d}}}{{{\text{dx}}}}{\text{sin(u)}}\;{\text{ = }}\;\dfrac{{\text{d}}}{{{\text{du}}}}{\text{sin(u)}}{\text{.}}\dfrac{{{\text{du}}}}{{{\text{dx}}}} $
$ = \;{\text{cos(u)}}\dfrac{{\text{d}}}{{{\text{dx}}}}{\text{(x + a)}} $
\[{\text{ = }}\;{\text{cos(x + a)}}{\text{.1}}\;{\text{ = }}\;{\text{cos(x + a)}}\]
15. \[{\text{cosecx}}{\text{.cotx}}\]
उत्तर: \[{\text{f(x)}}\] = \[{\text{cosecx}}{\text{.cotx}}\]
$ {{\text{(uv)}}^\prime}\; = \;{{\text{u}}^\prime}{\text{v + u}}{{\text{v}}^\prime} $
$ {{\text{f}}^\prime}{\text{(x)}}\;{\text{ = }}\;\dfrac{{\text{d}}}{{{\text{dx}}}}{\text{[cosecx](cotx) + (cosecx)}}\dfrac{{\text{d}}}{{{\text{dx}}}}{\text{[cotx]}} $
$ {\text{ = }}\;{\text{( - cosecx}}{\text{.cotx)cotx + cosecx( - cose}}{{\text{c}}^{\text{2}}}{\text{x)}} $
$ {\text{ = }}\;{\text{ - cose}}{{\text{c}}^{\text{3}}}{\text{x - cosecx}}\;{\text{co}}{{\text{t}}^{\text{2}}}{\text{x}} $
16. \[\dfrac{{{\text{cosx}}}}{{{\text{1 + sinx}}}}\]
उत्तर: \[{\text{f(x)}}\] = \[\dfrac{{{\text{cosx}}}}{{{\text{1 + sinx}}}}\]
${{\text{(}}\dfrac{{\text{u}}}{{\text{v}}}{\text{)}}^\prime}\;{\text{ = }}\;\dfrac{{{{\text{u}}^\prime}{\text{v - u}}{{\text{v}}^\prime}}}{{{{\text{v}}^{\text{2}}}}}$
$ \text{f}^\prime(x) = \dfrac{{\dfrac{{\text{d}}}{{{\text{dx}}}}{\text{[cosx](1 + sinx) - (cosx)}}\dfrac{{\text{d}}}{{{\text{dx}}}}{\text{[1 + sinx]}}}}{{{{{\text{(1 + sinx)}}}^{\text{2}}}}}{\text{ = }}\;\dfrac{{{\text{ - sinx(1 + sinx) - (cosx)(cosx)}}}}{{{{{\text{(1 + sinx)}}}^{\text{2}}}}} $
$ {\text{ = }}\;\dfrac{{{\text{ - sinx - si}}{{\text{n}}^{\text{2}}}{\text{x - co}}{{\text{s}}^{\text{2}}}{\text{x}}}}{{{{{\text{(1 + sinx)}}}^{\text{2}}}}} $
$ {\text{ = }}\;\dfrac{{{\text{ - sinx - (si}}{{\text{n}}^{\text{2}}}{\text{x + co}}{{\text{s}}^{\text{2}}}{\text{x)}}}}{{{{{\text{(1 + sinx)}}}^{\text{2}}}}} $
$ {\text{ = }}\;\dfrac{{{\text{ - sinx - 1}}}}{{{{{\text{(1 + sinx)}}}^{\text{2}}}}}$
$ {\text{ = }}\;\dfrac{{{\text{ - (sinx + 1)}}}}{{{{{\text{(1 + sinx)}}}^{\text{2}}}}} $
$ {\text{ = }}\;{\text{ - }}\dfrac{{\text{1}}}{{{\text{1 + sinx}}}} $
17. \[\dfrac{{{\text{sinx + cosx}}}}{{{\text{sinx - cosx}}}}\]
उत्तर: \[{\text{f(x)}}\] = \[\dfrac{{{\text{sinx + cosx}}}}{{{\text{sinx - cosx}}}}\]
$ {{\text{(}}\dfrac{{\text{u}}}{{\text{v}}}{\text{)}}^\prime}\;{\text{ = }}\;\dfrac{{{{\text{u}}^\prime}{\text{v - u}}{{\text{v}}^\prime}}}{{{{\text{v}}^{\text{2}}}}} $
$ \text{f}^\prime(x) = \dfrac{{\dfrac{{\text{d}}}{{{\text{dx}}}}{\text{[sinx + cosx](sinx - cosx) - (sinx + cosx)}}\dfrac{{\text{d}}}{{{\text{dx}}}}{\text{[sinx - cosx]}}}}{{{{{\text{(sinx - cosx)}}}^{\text{2}}}}}{\text{ = }}\;\dfrac{{{{{\text{-(cosx - sinx)}}}^{\text{2}}}{\text{ - (cosx + sinx}}{{\text{)}}^{\text{2}}}}}{{{{{\text{(sinx - cosx)}}}^{\text{2}}}}} $
\[{\text{ = }}\;\dfrac{{{\text{-(si}}{{\text{n}}^{\text{2}}}{\text{x + co}}{{\text{s}}^{\text{2}}}{\text{x - 2sinx}}\;{\text{cosx) - (si}}{{\text{n}}^{\text{2}}}{\text{x + co}}{{\text{s}}^{\text{2}}}{\text{x + 2sinx}}\;{\text{cosx)}}}}{{{{{\text{(sinx - cosx)}}}^{\text{2}}}}}\]
$ {\text{ = }}\;{\text{}}\dfrac{{{\text{-1 + 2sinx}}\;{\text{cosx - 1 - 2sinx}}\;{\text{cosx}}}}{{{{{\text{(sinx - cosx)}}}^{\text{2}}}}} $
$ {\text{ = }}\;\dfrac{{{\text{ - 2}}}}{{{{{\text{(sinx - cosx)}}}^{\text{2}}}}} $
18. \[\dfrac{{{\text{secx - 1}}}}{{{\text{secx + 1}}}}\]
उत्तर: \[{\text{f(x)}}\] = \[\dfrac{{{\text{secx - 1}}}}{{{\text{secx + 1}}}}\]
$ {{\text{(}}\dfrac{{\text{u}}}{{\text{v}}}{\text{)}}^\prime}\;{\text{ = }}\;\dfrac{{{{\text{u}}^\prime}{\text{v - u}}{{\text{v}}^\prime}}}{{{{\text{v}}^{\text{2}}}}} $
$ \text{f}^\prime(x) = \dfrac{{\dfrac{{\text{d}}}{{{\text{dx}}}}{\text{[secx - 1](secx + 1) - (secx - 1)}}\dfrac{{\text{d}}}{{{\text{dx}}}}{\text{[secx + 1]}}}}{{{{{\text{(secx + 1)}}}^{\text{2}}}}}{\text{ = }}\;\dfrac{{{\text{(secx}}\;{\text{tanx)(secx + 1) - (secx - 1)(secx}}\;{\text{tanx)}}}}{{{{{\text{(secx + 1)}}}^{\text{2}}}}} $
$ {\text{ = }}\;\dfrac{{{\text{se}}{{\text{c}}^{\text{2}}}{\text{x}}\;{\text{tanx - secx}}\;{\text{tanx - se}}{{\text{c}}^{\text{2}}}{\text{x}}\;{\text{tanx -(secx}}\;{\text{tanx)}}}}{{{{{\text{(secx + 1)}}}^{\text{2}}}}} $
$ {\text{ = }}\;{\text{ - }}\dfrac{{{\text{2secx}}\;{\text{tanx}}}}{{{{{\text{(secx + 1)}}}^{\text{2}}}}} $
19. \[{\text{si}}{{\text{n}}^{\text{n}}}{\text{x}}\]
उत्तर: \[{\text{f(x)}}\] = \[{\text{si}}{{\text{n}}^{\text{n}}}{\text{x}}\]
माना \[{\text{sinx}}\;{\text{ = }}\;{\text{u}}\]
\[{\text{f(x)}}\] = \[{{\text{u}}^{\text{n}}}\]
\[{\text{x}}\] के सापेक्ष अवकलन करने पर
$ \text{f}^\prime(x) = \dfrac{{\text{d}}}{{{\text{dx}}}}{{\text{u}}^{\text{n}}}\;{\text{ = }}\;\dfrac{{\text{d}}}{{{\text{du}}}}{{\text{u}}^{\text{n}}}{\text{.}}\dfrac{{{\text{du}}}}{{{\text{dx}}}} $
$ = \;{\text{n}}{{\text{u}}^{{\text{n - 1}}}}\dfrac{{\text{d}}}{{{\text{dx}}}}\sin {\text{x}} $
$ {\text{ = }}\;{\text{nsi}}{{\text{n}}^{{\text{n - 1}}}}{\text{x}}\dfrac{{\text{d}}}{{{\text{dx}}}}{\text{sinx}} $
$ {\text{ = }}\;{\text{nsi}}{{\text{n}}^{{\text{n - 1}}}}{\text{x}}\;{\text{cosx}}$
$ {\text{ = }}\;{\text{ncosx}}\;{\text{si}}{{\text{n}}^{{\text{n - 1}}}}{\text{x}}$
20. \[\dfrac{{{\text{a + bsinx}}}}{{{\text{c + dcosx}}}}\]
उत्तर: \[{\text{f(x)}}\] = \[\dfrac{{{\text{a + bsinx}}}}{{{\text{c + dcosx}}}}\]
$ {{\text{(}}\dfrac{{\text{u}}}{{\text{v}}}{\text{)}}^\prime}\;{\text{ = }}\;\dfrac{{{{\text{u}}^\prime}{\text{v - u}}{{\text{v}}^\prime}}}{{{{\text{v}}^{\text{2}}}}} $
$ \text{f}^\prime(x) = \dfrac{{\dfrac{{\text{d}}}{{{\text{dx}}}}{\text{[a + bsinx](c + dcosx) - (a + bsinx)}}\dfrac{{\text{d}}}{{{\text{dx}}}}{\text{[c + dcosx]}}}}{{{{{\text{(c + dcosx)}}}^{\text{2}}}}}{\text{ = }}\;\dfrac{{{\text{(bcosx)(c + dcosx) - (a + bsinx)( - dsinx)}}}}{{{{{\text{(c + dcosx)}}}^{\text{2}}}}} $
$ {\text{ = }}\;\dfrac{{{\text{bc}}\;{\text{cosx + ad}}\;{\text{sinx + bd(si}}{{\text{n}}^{\text{2}}}{\text{x + co}}{{\text{s}}^{\text{2}}}{\text{x)}}}}{{{{{\text{(c + dcosx)}}}^{\text{2}}}}} $
$ {\text{ = }}\;\dfrac{{{\text{bc}}\;{\text{cosx + ad}}\;{\text{sinx + bd}}}}{{{{{\text{(c + dcosx)}}}^{\text{2}}}}} $
21. \[\dfrac{{{\text{sin(x + a)}}}}{{{\text{cosx}}}}\]
उत्तर: \[{\text{f(x)}}\] = \[\dfrac{{{\text{sin(x + a)}}}}{{{\text{cosx}}}}\]
$ {{\text{(}}\dfrac{{\text{u}}}{{\text{v}}}{\text{)}}^\prime}\;{\text{ = }}\;\dfrac{{{{\text{u}}^\prime}{\text{v - u}}{{\text{v}}^\prime}}}{{{{\text{v}}^{\text{2}}}}} $
$ \text{f}^\prime(x) = \dfrac{{\dfrac{{\text{d}}}{{{\text{dx}}}}{\text{[sin(x + a)](cosx) - (sin(x + a))}}\dfrac{{\text{d}}}{{{\text{dx}}}}{\text{[cosx]}}}}{{{{{\text{(cosx)}}}^{\text{2}}}}}{\text{ = }}\;\dfrac{{{\text{cos(x + a)(cosx) - (sin(x + a))( - sinx)}}}}{{{{{\text{(cosx)}}}^{\text{2}}}}} $
$ {\text{ = }}\;\dfrac{{{\text{cos(x + a - x)}}}}{{{{{\text{(cosx)}}}^{\text{2}}}}}$
$ {\text{ = }}\;\dfrac{{{\text{cos(a)}}}}{{{{{\text{(cosx)}}}^{\text{2}}}}} $
22. \[{{\text{x}}^{\text{4}}}{\text{(5sinx - 3cosx)}}\]
उत्तर: \[{\text{f(x)}}\] = \[{{\text{x}}^{\text{4}}}{\text{(5sinx - 3cosx)}}\]
$ {{\text{(uv)}}^\prime}\;{\text{ = }}\;{{\text{u}}^\prime}{\text{v + u}}{{\text{v}}^\prime} $
${{\text{f}^\prime(x)\text{=}}}\;\dfrac{{\text{d}}}{{{\text{dx}}}}{\text{[}}{{\text{x}}^{\text{4}}}{\text{]((5sinx - 3cosx) + }}{{\text{x}}^{\text{4}}}{\text{}}\dfrac{{\text{d}}}{{{\text{dx}}}}{\text{[5sinx - 3cosx]}} $
$ {\text{ = }}\;{\text{4}}{{\text{x}}^{\text{3}}}{\text{(5sinx - 3cosx) + }}{{\text{x}}^{\text{4}}}{\text{(5cosx + 3sinx)}} $
$ {\text{ = }}\;{{\text{x}}^{\text{3}}}{\text{(20sinx - 12cosx + 5xcosx + 3xsinx)}} $
23. \[{\text{(}}{{\text{x}}^{\text{2}}}{\text{ + 1)cosx}}\]
उत्तर:
f(x) = \[{\text{(}}{{\text{x}}^{\text{2}}}{\text{ + 1)cosx}}\]
$ {{\text{(uv)}}^\prime}\;{\text{ = }}\;{{\text{u}}^\prime}{\text{v + u}}{{\text{v}}^\prime} $
$ \text{f}^\prime(x) = \dfrac{{\text{d}}}{{{\text{dx}}}}{\text{[}}{{\text{x}}^2}{\text{ + 1](cosx) + (}}{{\text{x}}^2}{\text{ + 1)}}\dfrac{{\text{d}}}{{{\text{dx}}}}{\text{[cosx]}} $
\[{\text{ = }}\;{\text{2x}}\;{\text{cosx + (}}{{\text{x}}^{\text{2}}}{\text{ + 1)( -sinx)}}\]
\[{\text{ = -}}\;{{\text{x}}^{\text{2}}}{\text{sinx - sinx + 2x}}\;{\text{cosx}}\]
24. \[{\text{(a}}{{\text{x}}^{\text{2}}}{\text{ + sinx)(p + qcosx)}}\]
उत्तर: \[{\text{f(x)}}\] = \[{\text{(a}}{{\text{x}}^{\text{2}}}{\text{ + sinx)(p + qcosx)}}\]
$ {{\text{(uv)}}^\prime}\;{\text{ = }}\;{{\text{u}}^\prime}{\text{v - u}}{{\text{v}}^\prime} $]
$f^\prime(x)=\dfrac{d}{{dx}}[ax^{2}+ sinx](p + qcosx) + (ax^{2}+ sinx)\dfrac{d}{{dx}}[p + qcosx] $
$ {\text{ = }}\;{\text{(2ax + cosx)(p + qcosx) + (a}}{{\text{x}}^{\text{2}}}{\text{ + sinx)( - qsinx)}} $
25. \[{\text{(x + cosx)(x - tanx)}}\]
उत्तर: \[{\text{f(x)}}\] = \[{\text{(x + cosx)(x - tanx)}}\]
$ {{\text{(uv)}}^\prime}\;{\text{ = }}\;{{\text{u}}^\prime}{\text{v - u}}{{\text{v}}^\prime} $
$ {{\text{f}}^{{\prime}}}{\text{(x) = }}\;\dfrac{{\text{d}}}{{{\text{dx}}}}{\text{[x + cosx](x - tanx) + (x + cosx)}}\dfrac{{\text{d}}}{{{\text{dx}}}}{\text{[x - tanx]}} $
$ {\text{ = }}\;{\text{(1 - sinx)(x - tanx) + (x + cosx)(1 - se}}{{\text{c}}^{\text{2}}}{\text{x)}} $
$ {\text{ = }}\;{\text{(1 - sinx)(x - tanx) - (x + cosx)ta}}{{\text{n}}^{\text{2}}}{\text{x}} $
26. \[\dfrac{{{\text{4x + 5sinx}}}}{{{\text{3x - 7cosx}}}}\]
उत्तर: \[{\text{f(x)}}\] = \[\dfrac{{{\text{4x + 5sinx}}}}{{{\text{3x - 7cosx}}}}\]
$ {{\text{(}}\dfrac{{\text{u}}}{{\text{v}}}{\text{)}}^\prime}\;{\text{ = }}\;\dfrac{{{{\text{u}}^\prime}{\text{v - u}}{{\text{v}}^\prime}}}{{{{\text{v}}^{\text{2}}}}}$
$ \text{f}^\prime(x) = \dfrac{{\dfrac{{\text{d}}}{{{\text{dx}}}}{\text{[4x + 5sinx](3x + 7cosx) - (4x + 5sinx)}}\dfrac{{\text{d}}}{{{\text{dx}}}}{\text{[3x + 7cosx]}}}}{{{{{\text{(3x + 7cosx)}}}^{\text{2}}}}} $
$ {\text{ = }}\;\dfrac{{{\text{(4 + 5cosx)(3x + 7cosx) - (4x + 5sinx)(3 - 7sinx)}}}}{{{{{\text{(3x + 7cosx)}}}^{\text{2}}}}} $
$ {\text{ = }}\;\dfrac{{{\text{(12x + 28cosx + 15x}}\;{\text{cosx + 35co}}{{\text{s}}^{\text{2}}}{\text{x) - (12x - 28x}}\;{\text{sinx + 15sinx - 35si}}{{\text{n}}^{\text{2}}}{\text{x)}}}}{{{{{\text{(3x + 7cosx)}}}^{\text{2}}}}}$
$ {\text{ = }}\;\dfrac{{{\text{35 + 15x}}\;{\text{cosx + 28cosx + 28x}}\;{\text{sinx - 15sinx}}}}{{{{{\text{(3x + 7cosx)}}}^{\text{2}}}}} $
27. \[\dfrac{{{{\text{x}}^{\text{2}}}{\text{cos(}}\dfrac{{{\pi }}}{{\text{4}}}{\text{)}}}}{{{\text{sinx}}}}\]
उत्तर: \[{\text{f(x)}}\] = \[\dfrac{{{{\text{x}}^{\text{2}}}{\text{cos(}}\dfrac{{{\pi }}}{{\text{4}}}{\text{)}}}}{{{\text{sinx}}}}\]
$ {{\text{(}}\dfrac{{\text{u}}}{{\text{v}}}{\text{)}}^\prime}\;{\text{ = }}\;\dfrac{{{{\text{u}}^\prime}{\text{v - u}}{{\text{v}}^\prime}}}{{{{\text{v}}^{\text{2}}}}}$
$ \text{f}^\prime(x) = \dfrac{{\text{1}}}{{\sqrt {\text{2}} }}\dfrac{{\dfrac{{\text{d}}}{{{\text{dx}}}}{\text{[}}{{\text{x}}^{\text{2}}}{\text{](sinx) - (}}{{\text{x}}^{\text{2}}}{\text{)}}\dfrac{{\text{d}}}{{{\text{dx}}}}{\text{[sinx]}}}}{{{{{\text{(sinx)}}}^{\text{2}}}}} $
$ {\text{ = }}\;\dfrac{{\text{1}}}{{\sqrt {\text{2}} }}\dfrac{{{\text{2x}}\;{\text{sinx - }}{{\text{x}}^{\text{2}}}{\text{cosx}}}}{{{{{\text{(sinx)}}}^{\text{2}}}}} $
28. \[\dfrac{{\text{x}}}{{{\text{1 + tanx}}}}\]
उत्तर: \[{\text{f(x)}}\] = \[\dfrac{{\text{x}}}{{{\text{1 + tanx}}}}\]
$ {{\text{(}}\dfrac{{\text{u}}}{{\text{v}}}{\text{)}}^\prime}\;{\text{ = }}\;\dfrac{{{{\text{u}}^\prime}{\text{v - u}}{{\text{v}}^\prime}}}{{{{\text{v}}^{\text{2}}}}} $
$ \text{f}^\prime(x) = \dfrac{{\dfrac{{\text{d}}}{{{\text{dx}}}}{\text{[x](1 + tanx) - (x)}}\dfrac{{\text{d}}}{{{\text{dx}}}}{\text{[1 + tanx]}}}}{{{{{\text{(1 + tanx)}}}^{\text{2}}}}} $
$ {\text{ = }}\;\dfrac{{{\text{(1 + tanx) - x}}\;{\text{se}}{{\text{c}}^{\text{2}}}{\text{x}}}}{{{{{\text{(1 + tanx)}}}^{\text{2}}}}} $
29. \[{\text{(x + secx)(x - tanx)}}\]
उत्तर: \[{\text{f(x)}}\] = \[{\text{(x + secx)(x - tanx)}}\]
$ {{\text{(uv)}}^\prime}\;{\text{ = }}\;{{\text{u}}^\prime}{\text{v - u}}{{\text{v}}^\prime} $
$ \text{f}^\prime(x) = \dfrac{{\text{d}}}{{{\text{dx}}}}{\text{[x + secx](x - tanx) + (x + secx)}}\dfrac{{\text{d}}}{{{\text{dx}}}}{\text{[x - tanx]}} $
$ {\text{ = }}\;{\text{(1 + secx}}\;{\text{tanx)(x - tanx) + (x + secx)(1 - se}}{{\text{c}}^{\text{2}}}{\text{x)}} $
30. \[\dfrac{{\text{x}}}{{{\text{si}}{{\text{n}}^{\text{n}}}{\text{x}}}}\]
उत्तर: \[{\text{f(x)}}\] = \[\dfrac{{\text{x}}}{{{\text{si}}{{\text{n}}^{\text{n}}}{\text{x}}}}\]
$ {{\text{(}}\dfrac{{\text{u}}}{{\text{v}}}{\text{)}}^\prime}\;{\text{ = }}\;\dfrac{{{{\text{u}}^\prime}{\text{v - u}}{{\text{v}}^\prime}}}{{{{\text{v}}^{\text{2}}}}}$
$ \text{f}^\prime(x) = \dfrac{{\dfrac{{\text{d}}}{{{\text{dx}}}}{\text{[x]( si}}{{\text{n}}^{\text{n}}}{\text{x) - (x)}}\dfrac{{\text{d}}}{{{\text{dx}}}}{\text{[si}}{{\text{n}}^{\text{n}}}{\text{x]}}}}{{{{{\text{(si}}{{\text{n}}^{\text{n}}}{\text{x)}}}^{\text{2}}}}} $
\[{\text{ = }}\;\dfrac{{{\text{si}}{{\text{n}}^{\text{n}}}{\text{x - xn}}\;{\text{cosx}}\;{\text{si}}{{\text{n}}^{{\text{n - 1}}}}{\text{x}}}}{{{{{\text{(si}}{{\text{n}}^{\text{n}}}{\text{x)}}}^{\text{2}}}}}\]
\[{\text{ = }}\;\dfrac{{{\text{si}}{{\text{n}}^{{\text{n - 1}}}}{\text{x(sinx - nx}}\;{\text{cosx)}}}}{{{\text{(si}}{{\text{n}}^{{\text{2n}}}}{\text{x)}}}}\]
\[{\text{ = }}\;\dfrac{{{\text{sinx - nx}}\;{\text{cosx}}}}{{{\text{si}}{{\text{n}}^{{\text{n + 1}}}}{\text{x}}}}\]
NCERT Solutions for Class 11 Maths Chapter 13 Limits and Derivatives in Hindi
Chapter-wise NCERT Solutions are provided everywhere on the internet with an aim to help the students to gain a comprehensive understanding. Class 11 Maths Chapter 13 solution Hindi mediums are created by our in-house experts keeping the understanding ability of all types of candidates in mind. NCERT textbooks and solutions are built to give a strong foundation to every concept. These NCERT Solutions for Class 11 Maths Chapter 13 in Hindi ensure a smooth understanding of all the concepts including the advanced concepts covered in the textbook.
NCERT Solutions for Class 11 Maths Chapter 13 in Hindi medium PDF download are easily available on our official website (vedantu.com). Upon visiting the website, you have to register on the website with your phone number and email address. Then you will be able to download all the study materials of your preference in a click. You can also download the Class 11 Maths Limits and Derivatives solution Hindi medium from Vedantu app as well by following the similar procedures, but you have to download the app from Google play store before doing that.
NCERT Solutions in Hindi medium have been created keeping those students in mind who are studying in a Hindi medium school. These NCERT Solutions for Class 11 Maths Limits and Derivatives in Hindi medium pdf download have innumerable benefits as these are created in simple and easy-to-understand language. The best feature of these solutions is a free download option. Students of Class 11 can download these solutions at any time as per their convenience for self-study purpose.
These solutions are nothing but a compilation of all the answers to the questions of the textbook exercises. The answers/ solutions are given in a stepwise format and very well researched by the subject matter experts who have relevant experience in this field. Relevant diagrams, graphs, illustrations are provided along with the answers wherever required. In nutshell, NCERT Solutions for Class 11 Maths in Hindi come really handy in exam preparation and quick revision as well prior to the final examinations.