Answer
Verified
434.4k+ views
Hint: We know the definition of rotational symmetry. The order of rotational symmetry of a shape is the number of times you can rotate a shape so that it looks the same. We include the original position but only once, i.e., not when it returns to its original position. We draw the diagram of parallelogram and rotate it about the centre and we find the order of symmetry.
Complete step-by-step answer:
We know that in parallelograms opposite sides are congruent (equal).
See the diagram.
Figure-1 is our original parallelogram. Let’s rotate the figure-1 about the centre through \[{180^0}\]clockwise direction. We obtain the figure-2 which has the same shape as our original parallelogram figure one. Now, let’s rotate the figure-2 about the centre through \[{180^0}\] clockwise direction. We obtain the figure-3 which is the same as figure-1 that is our original parallelogram.
We include the original position but only once, hence the order of the rotational symmetry of the parallelogram about the centre is $2$.
So, the correct answer is “Option C”.
Note: If we rotate the above diagram about the centre through \[{90^0}\], we don’t obtain the same shape as the original. This goes the same for \[{270^0}\]. In the order of rotational symmetry we only care about the shape and the vertices (vertices may differ, see in above diagram). Remember the important note that we include the original position but only once, i.e., not when it returns to its original position.
Complete step-by-step answer:
We know that in parallelograms opposite sides are congruent (equal).
See the diagram.
Figure-1 is our original parallelogram. Let’s rotate the figure-1 about the centre through \[{180^0}\]clockwise direction. We obtain the figure-2 which has the same shape as our original parallelogram figure one. Now, let’s rotate the figure-2 about the centre through \[{180^0}\] clockwise direction. We obtain the figure-3 which is the same as figure-1 that is our original parallelogram.
We include the original position but only once, hence the order of the rotational symmetry of the parallelogram about the centre is $2$.
So, the correct answer is “Option C”.
Note: If we rotate the above diagram about the centre through \[{90^0}\], we don’t obtain the same shape as the original. This goes the same for \[{270^0}\]. In the order of rotational symmetry we only care about the shape and the vertices (vertices may differ, see in above diagram). Remember the important note that we include the original position but only once, i.e., not when it returns to its original position.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
What is BLO What is the full form of BLO class 8 social science CBSE