NCERT Solutions for Class 10 Maths Chapter 8 Exercise 8.3 - FREE PDF Download
The NCERT Solutions for Class 10 Maths Chapter 8 Exercise 8.3 Introduction To Trigonometry provides complete solutions to the problems in the Exercise. These NCERT Solutions are intended to assist students with the CBSE Class 10 board examination. The answers are formulated by following the updated CBSE curriculum, hence going through the solution will surely secure high marks for you in your maths exams.
Students should thoroughly study this NCERT solution in order to solve all types of questions based on arithmetic progression. By completing these practice questions with the NCERT Maths Solutions Chapter 8 Exercise 8.3 Class 10, you will be better prepared to understand all of the different types of questions that may be asked in the Class 10 board exams.
Glance on NCERT Solutions Maths Chapter 8 Introduction To Trigonometry Class 10 | Vedantu
In Ex 8.3 Class 10 Chapter 8 Maths textbook focuses on trigonometric ratios of complementary angles. Complementary angles are two angles that add up to 90°.
Learn how the values of trigonometric ratios (sine, cosine, tangent, etc.) for an angle relate to the values of these ratios for its complementary angle.
The exercise will likely derive formulas that show this relationship. For example, sin (90° - A) = cos A.
Most questions will involve proving these relationships using trigonometric definitions and properties. You'll need a strong understanding of the concepts covered in the chapter.
NCERT Solutions for Maths Chapter 8 Exercise 8.3 Class 10 - Introduction To Trigonometry
Access NCERT Solutions for Class 10 Maths Chapter 8 Introduction to Trigonometry Exercise 8.3
1. Express the trigonometric ratios $\sin A,\sec A$ and $\tan A$ in terms of $\cot A$.
Ans: For a right triangle we have an identity ${{\operatorname{cosec}}^{2}}A=1+{{\cot }^{2}}A$.
Let us consider the above identity, we get
${{\operatorname{cosec}}^{2}}A=1+{{\cot }^{2}}A$
Now, reciprocating both sides we get
$\Rightarrow \dfrac{1}{{{\operatorname{cosec}}^{2}}A}=\dfrac{1}{1+{{\cot }^{2}}A}$
Now, we know that $\dfrac{1}{{{\operatorname{cosec}}^{2}}A}={{\sin }^{2}}A$, we get
$\Rightarrow {{\sin }^{2}}A=\dfrac{1}{1+{{\cot }^{2}}A}$
$\Rightarrow \sin A=\pm \dfrac{1}{\sqrt{1+{{\cot }^{2}}A}}$
Now, we know that sine value will be negative for angles greater than $180{}^\circ $, for a triangle sine value is always positive with respect to an angle. Then we will consider only positive value.
$\therefore \sin A=\dfrac{1}{\sqrt{1+{{\cot }^{2}}A}}$
We know that $\tan A=\dfrac{1}{\cot A}$
Also, we will use the identity ${{\sec }^{2}}A=1+{{\tan }^{2}}A$, we get
${{\sec }^{2}}A=1+{{\tan }^{2}}A$
$\Rightarrow {{\sec }^{2}}A=1+\dfrac{1}{{{\cot }^{2}}A}$
$\Rightarrow {{\sec }^{2}}A=\dfrac{{{\cot }^{2}}A+1}{{{\cot }^{2}}A}$
\[\Rightarrow \sec A=\dfrac{\sqrt{{{\cot }^{2}}A+1}}{\sqrt{{{\cot }^{2}}A}}\]
\[\therefore \sec A=\dfrac{\sqrt{{{\cot }^{2}}A+1}}{\cot A}\]
2. Write All the Other Trigonometric Ratios of $\angle A$ in terms of $\sec A$.
Ans:
We know that $\cos A=\dfrac{1}{\sec A}$.
$\therefore \cos A=\dfrac{1}{\sec A}$
For a right triangle we have an identity ${{\sin }^{2}}A+{{\cos }^{2}}A=1$.
Let us consider the above identity, we get
${{\sin }^{2}}A+{{\cos }^{2}}A=1$
Now, we know that $\cos A=\dfrac{1}{\sec A}$, we get
$\Rightarrow {{\sin }^{2}}A=1-{{\cos }^{2}}A$
$\Rightarrow {{\sin }^{2}}A=1-\dfrac{1}{{{\sec }^{2}}A}$
$\Rightarrow \sin A=\sqrt{1-{{\left( \dfrac{1}{\sec A} \right)}^{2}}}$
$\therefore \sin A=\dfrac{\sqrt{{{\sec }^{2}}A-1}}{\sec A}$
Also, we will use the identity ${{\sec }^{2}}A=1+{{\tan }^{2}}A$, we get
${{\tan }^{2}}A={{\sec }^{2}}A-1$
$\therefore \tan A=\sqrt{{{\sec }^{2}}A-1}$
Now, we know that $\cot A=\dfrac{\cos A}{\sin A}$, we get
$\Rightarrow \cot A=\dfrac{\dfrac{1}{\sec A}}{\dfrac{\sqrt{{{\sec }^{2}}A-1}}{\sec A}}$
$\therefore \cot A=\dfrac{1}{\sqrt{{{\sec }^{2}}A-1}}$
We know that $cosecA=\dfrac{1}{\sin A}$, we get $\therefore cosecA=\dfrac{\sec A}{\sqrt{{{\sec }^{2}}A-1}}$
3. Choose the Correct Option and Justify Your Choice:
\[9{{\sec }^{2}}A-9{{\tan }^{2}}A=\] …….
$1$
$9$
$8$
$0$
Ans: The given expression is $9{{\sec }^{2}}A-9{{\tan }^{2}}A$.
The given expression can be written as
$\Rightarrow 9{{\sec }^{2}}A-9{{\tan }^{2}}A=9\left( {{\sec }^{2}}A-{{\tan }^{2}}A \right)$
Now, we will use the identity ${{\sec }^{2}}A=1+{{\tan }^{2}}A$, we get
${{\sec }^{2}}A-{{\tan }^{2}}A=1$
$\Rightarrow 9{{\sec }^{2}}A-9{{\tan }^{2}}A=9\left( 1 \right)$
$\therefore 9{{\sec }^{2}}A-9{{\tan }^{2}}A=9$
Therefore, option (B) is the correct answer.
$\left( 1+\tan \theta +\sec \theta \right)\left( 1+\cot \theta -\operatorname{cosec}\theta \right)$
$0$
$1$
$2$
$-1$
Ans: The given expression is $\left( 1+\tan \theta +\sec \theta \right)\left( 1+\cot \theta -\operatorname{cosec}\theta \right)$.
We know that the trigonometric functions have values as:
$\tan \theta =\dfrac{\sin \theta }{\cos \theta }$, $\cot \theta =\dfrac{\cos \theta }{\sin \theta }=\dfrac{1}{\tan \theta }$, $cosec\theta =\dfrac{1}{\sin \theta }$ and $sec\theta =\dfrac{1}{\cos \theta }$
Substituting these values in the given expression, we get
$\Rightarrow \left( 1+\tan \theta +\sec \theta \right)\left( 1+\cot \theta -\operatorname{cosec}\theta \right)=\left( 1+\dfrac{\sin \theta }{\cos \theta }+\dfrac{1}{\cos \theta } \right)\left( 1+\dfrac{\cos \theta }{\sin \theta }-\dfrac{1}{\sin \theta } \right)$
$\Rightarrow \left( 1+\tan \theta +\sec \theta \right)\left( 1+\cot \theta -\operatorname{cosec}\theta \right)=\left( \dfrac{\cos \theta +\sin \theta +1}{\cos \theta } \right)\left( \dfrac{\sin \theta +\cos \theta -1}{\sin \theta } \right)$
Now, by applying the identity $\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}$, we get
$\Rightarrow \left( 1+\tan \theta +\sec \theta \right)\left( 1+\cot \theta -\operatorname{cosec}\theta \right)=\dfrac{{{\left( \sin \theta +\cos \theta \right)}^{2}}-{{1}^{2}}}{\sin \theta \cos \theta }$
$\Rightarrow \left( 1+\tan \theta +\sec \theta \right)\left( 1+\cot \theta -\operatorname{cosec}\theta \right)=\dfrac{{{\sin }^{2}}\theta +{{\cos }^{2}}\theta +2\sin \theta \cos \theta -1}{\sin \theta \cos \theta }$
Now, by applying the trigonometric identity ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$, we get
$\Rightarrow \left( 1+\tan \theta +\sec \theta \right)\left( 1+\cot \theta -\operatorname{cosec}\theta \right)=\dfrac{1+2\sin \theta \cos \theta -1}{\sin \theta \cos \theta }$
$\Rightarrow \left( 1+\tan \theta +\sec \theta \right)\left( 1+\cot \theta -\operatorname{cosec}\theta \right)=\dfrac{2\sin \theta \cos \theta }{\sin \theta \cos \theta }$
$\therefore \left( 1+\tan \theta +\sec \theta \right)\left( 1+\cot \theta -\operatorname{cosec}\theta \right)=2$
Therefore, option (C) is the correct answer.
$\left( \sec A+\tan A \right)\left( 1-\sin A \right)=$ ………
$\sec A$
$\sin A$
$cosecA$
$\cos A$
Ans: Given expression is $\left( \sec A+\tan A \right)\left( 1-\sin A \right)$.
We know that $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$ and $sec\theta =\dfrac{1}{\cos \theta }$
Substituting these values in the given expression, we get
$\left( \sec A+\tan A \right)\left( 1-\sin A \right)=\left( \dfrac{1}{\cos A}+\dfrac{\sin A}{\cos A} \right)\left( 1-\sin A \right)$
$\Rightarrow \left( \sec A+\tan A \right)\left( 1-\sin A \right)=\left( \dfrac{1+\sin A}{\cos A} \right)\left( 1-\sin A \right)$
$\Rightarrow \left( \sec A+\tan A \right)\left( 1-\sin A \right)=\left( \dfrac{\left( 1+\sin A \right)\left( 1-\sin A \right)}{\cos A} \right)$
Now, by applying the identity $\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}$, we get
$\Rightarrow \left( \sec A+\tan A \right)\left( 1-\sin A \right)=\left( \dfrac{{{1}^{2}}-{{\sin }^{2}}A}{\cos A} \right)$
Now, we know that ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$, we get
$\Rightarrow \left( \sec A+\tan A \right)\left( 1-\sin A \right)=\left( \dfrac{{{\cos }^{2}}A}{\cos A} \right)$
$\therefore \left( \sec A+\tan A \right)\left( 1-\sin A \right)=\cos A$
Therefore, option (D) is the correct answer.
$\dfrac{1+{{\tan }^{2}}A}{1+{{\cot }^{2}}A}$
${{\sec }^{2}}A$
$-1$
${{\cot }^{2}}A$
${{\tan }^{2}}A$
Ans: Given expression is $\dfrac{1+{{\tan }^{2}}A}{1+{{\cot }^{2}}A}$.
We know that the trigonometric functions have values as:
$\tan \theta =\dfrac{\sin \theta }{\cos \theta }$ and $\cot \theta =\dfrac{\cos \theta }{\sin \theta }=\dfrac{1}{\tan \theta }$.
Substituting these values in the given expression, we get
$\dfrac{1+{{\tan }^{2}}A}{1+{{\cot }^{2}}A}=\dfrac{1+\dfrac{{{\sin }^{2}}A}{{{\cos }^{2}}A}}{1+\dfrac{{{\cos }^{2}}A}{{{\sin }^{2}}A}}$
$\Rightarrow \dfrac{1+{{\tan }^{2}}A}{1+{{\cot }^{2}}A}=\dfrac{\dfrac{{{\cos }^{2}}A+{{\sin }^{2}}A}{{{\cos }^{2}}A}}{\dfrac{{{\sin }^{2}}A+{{\cos }^{2}}A}{{{\sin }^{2}}A}}$
Now, we know that ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$, we get
$\Rightarrow \dfrac{1+{{\tan }^{2}}A}{1+{{\cot }^{2}}A}=\dfrac{\dfrac{1}{{{\cos }^{2}}A}}{\dfrac{1}{{{\sin }^{2}}A}}$
$\Rightarrow \dfrac{1+{{\tan }^{2}}A}{1+{{\cot }^{2}}A}=\dfrac{{{\sin }^{2}}A}{{{\cos }^{2}}A}$
$\Rightarrow \dfrac{1+{{\tan }^{2}}A}{1+{{\cot }^{2}}A}={{\tan }^{2}}A$
Therefore, option (D) is the correct answer.
4. Prove the Following Identities, Where the Angles Involved are Acute Angles for Which the Expressions are Defined.
${{\left( cosec\theta -cot\theta \right)}^{2}}=\dfrac{1-\cos \theta }{1+\cos \theta }$
Ans: Given expression is ${{\left( cosec\theta -\cot \theta \right)}^{2}}=\dfrac{1-\cos \theta }{1+\cos \theta }$.
Let us consider the LHS of the given expression, we get
$LHS={{\left( cosec\theta -\cot \theta \right)}^{2}}$
Now, we know that $\cot \theta =\dfrac{\cos \theta }{\sin \theta }=\dfrac{1}{\tan \theta }$ and $cosec\theta =\dfrac{1}{\sin \theta }$.
By substituting the values, we get
$\Rightarrow {{\left( cosec\theta -\cot \theta \right)}^{2}}={{\left( \dfrac{1}{\sin \theta }-\dfrac{\cos \theta }{\sin \theta } \right)}^{2}}$
$\Rightarrow {{\left( cosec\theta -\cot \theta \right)}^{2}}={{\left( \dfrac{1-\cos \theta }{\sin \theta } \right)}^{2}}$
$\Rightarrow {{\left( cosec\theta -\cot \theta \right)}^{2}}=\dfrac{{{\left( 1-\cos \theta \right)}^{2}}}{{{\sin }^{2}}\theta }$
Now, we know that ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$, we get
$\Rightarrow {{\left( cosec\theta -\cot \theta \right)}^{2}}=\dfrac{{{\left( 1-\cos \theta \right)}^{2}}}{1-{{\cos }^{2}}\theta }$
Now, by applying the identity $\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}$, we get
$\Rightarrow {{\left( cosec\theta -\cot \theta \right)}^{2}}=\dfrac{{{\left( 1-\cos \theta \right)}^{2}}}{\left( 1-\cos \theta \right)\left( 1+\cos \theta \right)}$
$\Rightarrow {{\left( cosec\theta -\cot \theta \right)}^{2}}=\dfrac{\left( 1-\cos \theta \right)}{\left( 1+\cos \theta \right)}$
$\Rightarrow {{\left( cosec\theta -\cot \theta \right)}^{2}}=RHS$
$\therefore {{\left( cosec\theta -\cot \theta \right)}^{2}}=\dfrac{1-\cos \theta }{1+\cos \theta }$
Hence proved
$\dfrac{\cos A}{1+\sin A}+\dfrac{1+\sin A}{\cos A}=2\sec A$
Ans: Given expression is $\dfrac{\cos A}{1+\sin A}+\dfrac{1+\sin A}{\cos A}=2\sec A$.
Let us consider the LHS of the given expression, we get
$LHS=\dfrac{\cos A}{1+\sin A}+\dfrac{1+\sin A}{\cos A}$
Now, taking LCM, we get
$\Rightarrow \dfrac{\cos A}{1+\sin A}+\dfrac{1+\sin A}{\cos A}=\dfrac{{{\cos }^{2}}A+\left( 1+\sin A \right)\left( 1+\sin A \right)}{\left( 1+\sin A \right)\cos A}$
$\Rightarrow \dfrac{\cos A}{1+\sin A}+\dfrac{1+\sin A}{\cos A}=\dfrac{{{\cos }^{2}}A+{{\sin }^{2}}A+2\sin A+1}{\left( 1+\sin A \right)\cos A}$
Now, we know that ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$, we get
$\Rightarrow \dfrac{\cos A}{1+\sin A}+\dfrac{1+\sin A}{\cos A}=\dfrac{1+2\sin A+1}{\left( 1+\sin A \right)\cos A}$
$\Rightarrow \dfrac{\cos A}{1+\sin A}+\dfrac{1+\sin A}{\cos A}=\dfrac{2+2\sin A}{\left( 1+\sin A \right)\cos A}$
$\Rightarrow \dfrac{\cos A}{1+\sin A}+\dfrac{1+\sin A}{\cos A}=\dfrac{2\left( 1+\sin A \right)}{\left( 1+\sin A \right)\cos A}$
$\Rightarrow \dfrac{\cos A}{1+\sin A}+\dfrac{1+\sin A}{\cos A}=\dfrac{2}{\cos A}$
We know that $sec\theta =\dfrac{1}{\cos \theta }$, we get
$\Rightarrow \dfrac{\cos A}{1+\sin A}+\dfrac{1+\sin A}{\cos A}=2\sec A$
\[\Rightarrow \dfrac{\cos A}{1+\sin A}+\dfrac{1+\sin A}{\cos A}=RHS\]
\[\therefore \dfrac{\cos A}{1+\sin A}+\dfrac{1+\sin A}{\cos A}=2\sec A\]
Hence proved
$\dfrac{\tan \theta }{1-\cot \theta }+\dfrac{\cot \theta }{1-\tan \theta }=1+\sec \theta cosec\theta $
Ans: Given expression is $\dfrac{\tan \theta }{1-\cot \theta }+\dfrac{\cot \theta }{1-\tan \theta }=1+\sec \theta \operatorname{cosec}\theta $.
Let us consider the LHS of the given expression, we get
$LHS=\dfrac{\tan \theta }{1-\cot \theta }+\dfrac{\cot \theta }{1-\tan \theta }$
Now, we know that $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$ and $\cot \theta =\dfrac{\cos \theta }{\sin \theta }=\dfrac{1}{\tan \theta }$.
By substituting the values, we get
\[\Rightarrow \dfrac{\tan \theta }{1-\cot \theta }+\dfrac{\cot \theta }{1-\tan \theta }=\left( \dfrac{\dfrac{\sin \theta }{\cos \theta }}{1-\dfrac{\cos \theta }{\sin \theta }}+\dfrac{\dfrac{\cos \theta }{\sin \theta }}{1-\dfrac{\sin \theta }{\cos \theta }} \right)\]
\[\Rightarrow \dfrac{\tan \theta }{1-\cot \theta }+\dfrac{\cot \theta }{1-\tan \theta }=\left( \dfrac{\dfrac{\sin \theta }{\cos \theta }}{\dfrac{\sin \theta -\cos \theta }{\sin \theta }}+\dfrac{\dfrac{\cos \theta }{\sin \theta }}{\dfrac{\cos \theta -\sin \theta }{\cos \theta }} \right)\]
\[\Rightarrow \dfrac{\tan \theta }{1-\cot \theta }+\dfrac{\cot \theta }{1-\tan \theta }=\left( \dfrac{{{\sin }^{2}}\theta }{\cos \theta \left( \sin \theta -\cos \theta \right)}+\dfrac{{{\cos }^{2}}\theta }{\sin \theta \left( \sin \theta -\cos \theta \right)} \right)\]
\[\Rightarrow \dfrac{\tan \theta }{1-\cot \theta }+\dfrac{\cot \theta }{1-\tan \theta }=\dfrac{1}{\left( \sin \theta -\cos \theta \right)}\left( \dfrac{{{\sin }^{2}}\theta }{\cos \theta }+\dfrac{{{\cos }^{2}}\theta }{\sin \theta } \right)\]
\[\Rightarrow \dfrac{\tan \theta }{1-\cot \theta }+\dfrac{\cot \theta }{1-\tan \theta }=\dfrac{1}{\left( \sin \theta -\cos \theta \right)}\left( \dfrac{{{\sin }^{3}}\theta -{{\cos }^{3}}\theta }{\sin \theta \cos \theta } \right)\]
Now, by applying the identity \[{{a}^{3}}-{{b}^{3}}=\left( a-b \right)\left( {{a}^{2}}+ab+{{b}^{2}} \right)\], we get
\[\Rightarrow \dfrac{\tan \theta }{1-\cot \theta }+\dfrac{\cot \theta }{1-\tan \theta }=\dfrac{1}{\left( \sin \theta -\cos \theta \right)}\left[ \dfrac{\left( \sin \theta -\cos \theta \right)\left( {{\sin }^{2}}\theta +{{\cos }^{2}}\theta +\sin \theta \cos \theta \right)}{\sin \theta \cos \theta } \right]\]
Now, we know that ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$, we get
\[\Rightarrow \dfrac{\tan \theta }{1-\cot \theta }+\dfrac{\cot \theta }{1-\tan \theta }=\dfrac{1}{\left( \sin \theta -\cos \theta \right)}\left[ \dfrac{\left( \sin \theta -\cos \theta \right)\left( 1+\sin \theta \cos \theta \right)}{\sin \theta \cos \theta } \right]\]
\[\Rightarrow \dfrac{\tan \theta }{1-\cot \theta }+\dfrac{\cot \theta }{1-\tan \theta }=\dfrac{\left( 1+\sin \theta \cos \theta \right)}{\sin \theta \cos \theta }\]
\[\Rightarrow \dfrac{\tan \theta }{1-\cot \theta }+\dfrac{\cot \theta }{1-\tan \theta }=\dfrac{1}{\sin \theta \cos \theta }+\dfrac{\sin \theta \cos \theta }{\sin \theta \cos \theta }\]
\[\Rightarrow \dfrac{\tan \theta }{1-\cot \theta }+\dfrac{\cot \theta }{1-\tan \theta }=\dfrac{1}{\sin \theta \cos \theta }+1\]
We know that $cosec\theta =\dfrac{1}{\sin \theta }$ and $sec\theta =\dfrac{1}{\cos \theta }$, we get
\[\Rightarrow \dfrac{\tan \theta }{1-\cot \theta }+\dfrac{\cot \theta }{1-\tan \theta }=\sec \theta cosec\theta +1\]
\[\Rightarrow \dfrac{\tan \theta }{1-\cot \theta }+\dfrac{\cot \theta }{1-\tan \theta }=1+\sec \theta cosec\theta \]
\[\Rightarrow \dfrac{\tan \theta }{1-\cot \theta }+\dfrac{\cot \theta }{1-\tan \theta }=RHS\]
\[\therefore \dfrac{\tan \theta }{1-\cot \theta }+\dfrac{\cot \theta }{1-\tan \theta }=1+\sec \theta cosec\theta \]
Hence proved
$\dfrac{1+\sec A}{\sec A}=\dfrac{{{\sin }^{2}}A}{1-\cos A}$
Ans: Given expression is $\dfrac{1+\sec A}{\sec A}=\dfrac{{{\sin }^{2}}A}{1-\cos A}$.
Let us consider the LHS of the given expression, we get
$LHS=\dfrac{1+\sec A}{\sec A}$
Now, we know that $\sec \theta =\dfrac{1}{\cos \theta }$.
By substituting the value, we get
\[\Rightarrow \dfrac{1+\sec A}{\sec A}=\dfrac{1+\dfrac{1}{\cos A}}{\dfrac{1}{\cos A}}\]
\[\Rightarrow \dfrac{1+\sec A}{\sec A}=\dfrac{\dfrac{\cos A+1}{\cos A}}{\dfrac{1}{\cos A}}\]
\[\Rightarrow \dfrac{1+\sec A}{\sec A}=\cos A+1\]
Multiply and divide by $\left( 1-\cos A \right)$, we get
\[\Rightarrow \dfrac{1+\sec A}{\sec A}=\dfrac{\left( 1+\cos A \right)\left( 1-\cos A \right)}{\left( 1-\cos A \right)}\]
Now, by applying the identity $\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}$, we get
\[\Rightarrow \dfrac{1+\sec A}{\sec A}=\dfrac{1-{{\cos }^{2}}A}{\left( 1-\cos A \right)}\]
Now, we know that ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$, we get
\[\Rightarrow \dfrac{1+\sec A}{\sec A}=\dfrac{{{\sin }^{2}}A}{\left( 1-\cos A \right)}\]
\[\Rightarrow \dfrac{1+\sec A}{\sec A}=RHS\]
\[\therefore \dfrac{1+\sec A}{\sec A}=\dfrac{{{\sin }^{2}}A}{1-\cos A}\]
Hence proved
$\dfrac{\cos A-\sin A+1}{\cos A+\sin A-1}=cosecA+\cot A$
Ans: Given expression is $\dfrac{\cos A-\sin A+1}{\cos A+\sin A-1}=cosecA+\cot A$.
Now, let us consider the LHS of the given expression, we get
$LHS=\dfrac{\cos A-\sin A+1}{\cos A+\sin A-1}$
Dividing numerator and denominator by $\sin A$, we get
$\Rightarrow \dfrac{\cos A-\sin A+1}{\cos A+\sin A-1}=\dfrac{\dfrac{\cos A}{\sin A}-\dfrac{\sin A}{\sin A}+\dfrac{1}{\sin A}}{\dfrac{\cos A}{\sin A}+\dfrac{\sin A}{\sin A}-\dfrac{1}{\sin A}}$
Now, we know that $\cot \theta =\dfrac{\cos \theta }{\sin \theta }=\dfrac{1}{\tan \theta }$ and $cosec\theta =\dfrac{1}{\sin \theta }$, we get
$\Rightarrow \dfrac{\cos A-\sin A+1}{\cos A+\sin A-1}=\dfrac{\cot A-1+\operatorname{cosec}A}{\cot A+1-\operatorname{cosec}A}$
Now, by applying the identity ${{\operatorname{cosec}}^{2}}A=1+{{\cot }^{2}}A$, substitute $1={{\cot }^{2}}A-{{\operatorname{cosec}}^{2}}A$, we get
$\Rightarrow \dfrac{\cos A-\sin A+1}{\cos A+\sin A-1}=\dfrac{\cot A-\left( {{\cot }^{2}}A-{{\operatorname{cosec}}^{2}}A \right)+\operatorname{cosec}A}{\cot A+{{\cot }^{2}}A-{{\operatorname{cosec}}^{2}}A-\operatorname{cosec}A}$
$\Rightarrow \dfrac{\cos A-\sin A+1}{\cos A+\sin A-1}=\dfrac{\cot A-{{\cot }^{2}}A+{{\operatorname{cosec}}^{2}}A+\operatorname{cosec}A}{\cot A+{{\cot }^{2}}A-{{\operatorname{cosec}}^{2}}A-\operatorname{cosec}A}$
$\Rightarrow \dfrac{\cos A-\sin A+1}{\cos A+\sin A-1}=\dfrac{{{\left( \cot A-1+\operatorname{cosec}A \right)}^{2}}}{{{\cot }^{2}}A-1+{{\operatorname{cosec}}^{2}}A+2\operatorname{cosec}A}$
$\Rightarrow \dfrac{\cos A-\sin A+1}{\cos A+\sin A-1}=\dfrac{{{\left( \cot A-1+\operatorname{cosec}A \right)}^{2}}}{{{\cot }^{2}}A-1+{{\operatorname{cosec}}^{2}}A+2\operatorname{cosec}A}$
$\Rightarrow \dfrac{\cos A-\sin A+1}{\cos A+\sin A-1}=\dfrac{2{{\operatorname{cosec}}^{2}}A+2\cot A\operatorname{cosec}A-2\cot A-2\operatorname{cosec}A}{{{\cot }^{2}}A-1+{{\operatorname{cosec}}^{2}}A+2\operatorname{cosec}A}$
$\Rightarrow \dfrac{\cos A-\sin A+1}{\cos A+\sin A-1}=\dfrac{2\operatorname{cosec}A\left( \cot A-\operatorname{cosec}A \right)-2\left( \cot A-\operatorname{cosec}A \right)}{{{\cot }^{2}}A-1+{{\operatorname{cosec}}^{2}}A+2\operatorname{cosec}A}$
$\Rightarrow \dfrac{\cos A-\sin A+1}{\cos A+\sin A-1}=\dfrac{\left( 2\operatorname{cosec}A-2 \right)\left( \cot A-\operatorname{cosec}A \right)}{1-1+2\operatorname{cosec}A}$
$\Rightarrow \dfrac{\cos A-\sin A+1}{\cos A+\sin A-1}=\dfrac{\left( 2\operatorname{cosec}A-2 \right)\left( \cot A-\operatorname{cosec}A \right)}{2\operatorname{cosec}A}$
$\Rightarrow \dfrac{\cos A-\sin A+1}{\cos A+\sin A-1}=\operatorname{cosec}A+\cot A$
$\Rightarrow \dfrac{\cos A-\sin A+1}{\cos A+\sin A-1}=RHS$
$\therefore \dfrac{\cos A-\sin A+1}{\cos A+\sin A-1}=\operatorname{cosec}A+\cot A$
Hence proved
$\sqrt{\dfrac{1+\sin A}{1-\sin A}}=\sec A+\tan A$
Ans: Given expression is $\sqrt{\dfrac{1+\sin A}{1-\sin A}}=\sec A+\tan A$.
Let us consider the LHS of the given expression, we get
$LHS=\sqrt{\dfrac{1+\sin A}{1-\sin A}}$
Now, multiply and divide the expression by $\sqrt{1+\sin A}$, we get
$\Rightarrow \sqrt{\dfrac{1+\sin A}{1-\sin A}}=\sqrt{\dfrac{\left( 1+\sin A \right)\left( 1+\sin A \right)}{\left( 1-\sin A \right)\left( 1+\sin A \right)}}$
Now, by applying the identity $\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}$, we get
\[\Rightarrow \sqrt{\dfrac{1+\sin A}{1-\sin A}}=\sqrt{\dfrac{{{\left( 1+\sin A \right)}^{2}}}{1-{{\sin }^{2}}A}}\]
Now, we know that ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$, we get
\[\Rightarrow \sqrt{\dfrac{1+\sin A}{1-\sin A}}=\dfrac{1+\sin A}{\sqrt{{{\cos }^{2}}A}}\]
\[\Rightarrow \sqrt{\dfrac{1+\sin A}{1-\sin A}}=\dfrac{1+\sin A}{\cos A}\]
\[\Rightarrow \sqrt{\dfrac{1+\sin A}{1-\sin A}}=\dfrac{1}{\cos A}+\dfrac{\sin A}{\cos A}\]
\[\Rightarrow \sqrt{\dfrac{1+\sin A}{1-\sin A}}=\sec A+\tan A\]
\[\Rightarrow \sqrt{\dfrac{1+\sin A}{1-\sin A}}=RHS\]
$\therefore \sqrt{\dfrac{1+\sin A}{1-\sin A}}=\sec A+\tan A$
Hence proved
$\dfrac{\sin \theta -2{{\sin }^{3}}\theta }{2\cos \theta -\cos \theta }=\tan \theta $
Ans: Given expression is $\dfrac{\sin \theta -2{{\sin }^{3}}\theta }{2\cos \theta -\cos \theta }=\tan \theta $.
Let us consider the LHS of the given expression, we get
$LHS=\dfrac{\sin \theta -2{{\sin }^{3}}\theta }{2\cos \theta -\cos \theta }$
Taking common terms out, we get
$\Rightarrow \dfrac{\sin \theta -2{{\sin }^{3}}\theta }{2\cos \theta -\cos \theta }=\dfrac{\sin \theta \left( 1-2{{\sin }^{2}}\theta \right)}{\cos \theta \left( 2{{\cos }^{2}}\theta -1 \right)}$
Now, we know that ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$, we get
$\Rightarrow \dfrac{\sin \theta -2{{\sin }^{3}}\theta }{2\cos \theta -\cos \theta }=\dfrac{\sin \theta \left( 1-2{{\sin }^{2}}\theta \right)}{\cos \theta \left( 2\left( 1-2{{\sin }^{2}}\theta \right)-1 \right)}$
$\Rightarrow \dfrac{\sin \theta -2{{\sin }^{3}}\theta }{2\cos \theta -\cos \theta }=\dfrac{\sin \theta \left( 1-2{{\sin }^{2}}\theta \right)}{\cos \theta \left( 2-2{{\sin }^{2}}\theta -1 \right)}$
$\Rightarrow \dfrac{\sin \theta -2{{\sin }^{3}}\theta }{2\cos \theta -\cos \theta }=\dfrac{\sin \theta \left( 1-2{{\sin }^{2}}\theta \right)}{\cos \theta \left( 1-2{{\sin }^{2}}\theta \right)}$
$\Rightarrow \dfrac{\sin \theta -2{{\sin }^{3}}\theta }{2\cos \theta -\cos \theta }=\dfrac{\sin \theta }{\cos \theta }$
$\Rightarrow \dfrac{\sin \theta -2{{\sin }^{3}}\theta }{2\cos \theta -\cos \theta }=\tan \theta $
$\Rightarrow \dfrac{\sin \theta -2{{\sin }^{3}}\theta }{2\cos \theta -\cos \theta }=RHS$
$\therefore \dfrac{\sin \theta -2{{\sin }^{3}}\theta }{2\cos \theta -\cos \theta }=\tan \theta $
Hence proved
${{\left( \sin A+cosecA \right)}^{2}}+{{\left( \cos A+secA \right)}^{2}}=7+{{\tan }^{2}}A+{{\cot }^{2}}A$
Ans: Given expression is ${{\left( \sin A+cosecA \right)}^{2}}+{{\left( \cos A+\sec A \right)}^{2}}=7+{{\tan }^{2}}A+{{\cot }^{2}}A$.
Let us consider the LHS of the given expression, we get
$LHS={{\left( \sin A+cosecA \right)}^{2}}+{{\left( \cos A+\sec A \right)}^{2}}$
Now, by applying the identity \[{{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}\], we get
\[\Rightarrow {{\left( \sin A+cosecA \right)}^{2}}+{{\left( \cos A+\sec A \right)}^{2}}={{\sin }^{2}}A+cosec{{A}^{2}}+2\sin AcosecA+{{\cos }^{2}}A+{{\sec }^{2}}A+2\cos A\sec A\]\[\Rightarrow {{\left( \sin A+cosecA \right)}^{2}}+{{\left( \cos A+\sec A \right)}^{2}}={{\sin }^{2}}A+{{\cos }^{2}}A+cosec{{A}^{2}}+{{\sec }^{2}}A+2\sin AcosecA+2\cos A\sec A\]We know that ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$, $cosec\theta =\dfrac{1}{\sin \theta }$ and $sec\theta =\dfrac{1}{\cos \theta }$, we get
\[\Rightarrow {{\left( \sin A+cosecA \right)}^{2}}+{{\left( \cos A+\sec A \right)}^{2}}=1+cose{{c}^{2}}\theta +{{\sec }^{2}}\theta +2\sin A\dfrac{1}{\sin A}+2\cos A\dfrac{1}{\cos A}\]
\[\Rightarrow {{\left( \sin A+cosecA \right)}^{2}}+{{\left( \cos A+\sec A \right)}^{2}}=1+\left( 1+{{\cot }^{2}}A+1+{{\tan }^{2}}A \right)+2+2\]
\[\Rightarrow {{\left( \sin A+cosecA \right)}^{2}}+{{\left( \cos A+\sec A \right)}^{2}}=7+{{\tan }^{2}}A+{{\cot }^{2}}A\]
\[\Rightarrow {{\left( \sin A+cosecA \right)}^{2}}+{{\left( \cos A+\sec A \right)}^{2}}=RHS\]
\[\therefore {{\left( \sin A+cosecA \right)}^{2}}+{{\left( \cos A+\sec A \right)}^{2}}=7+{{\tan }^{2}}A+{{\cot }^{2}}A\]
Hence proved
$\left( cosecA-\sin A \right)\left( \sec A-\cos A \right)=\dfrac{1}{\tan A+\cot A}$
Ans: Given expression is $\left( cosecA-\sin A \right)\left( \sec A-\cos A \right)=\dfrac{1}{\tan A+\cot A}$.
Let us consider the LHS of the given expression, we get
$LHS=\left( cosecA-\sin A \right)\left( \sec A-\cos A \right)$
We know that $cosec\theta =\dfrac{1}{\sin \theta }$ and $sec\theta =\dfrac{1}{\cos \theta }$, we get
$\Rightarrow \left( cosecA-\sin A \right)\left( \sec A-\cos A \right)=\left( \dfrac{1}{\sin A}-\sin A \right)\left( \dfrac{1}{\cos A}-\cos A \right)$
$\Rightarrow \left( cosecA-\sin A \right)\left( \sec A-\cos A \right)=\left( \dfrac{1-{{\sin }^{2}}A}{\sin A} \right)\left( \dfrac{1-{{\cos }^{2}}A}{\cos A} \right)$
Now, we know that ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$, we get
$\Rightarrow \left( cosecA-\sin A \right)\left( \sec A-\cos A \right)=\left( \dfrac{{{\cos }^{2}}A}{\sin A} \right)\left( \dfrac{{{\sin }^{2}}A}{\cos A} \right)$
$\Rightarrow \left( cosecA-\sin A \right)\left( \sec A-\cos A \right)=\sin A\cos A$
Now, consider the RHS of the given expression, we get
$RHS=\dfrac{1}{\tan A+\cot A}$
Now, we know that $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$ and $\cot \theta =\dfrac{\cos \theta }{\sin \theta }=\dfrac{1}{\tan \theta }$.
$\Rightarrow \dfrac{1}{\tan A+\cot A}=\dfrac{1}{\dfrac{\sin A}{\cos A}+\dfrac{\cos A}{\sin A}}$
$\Rightarrow \dfrac{1}{\tan A+\cot A}=\dfrac{1}{\dfrac{{{\sin }^{2}}A+{{\cos }^{2}}A}{\sin A\cos A}}$
$\Rightarrow \dfrac{1}{\tan A+\cot A}=\dfrac{\sin A\cos A}{{{\sin }^{2}}A+{{\cos }^{2}}A}$
Now, we know that ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$, we get
$\Rightarrow \dfrac{1}{\tan A+\cot A}=\sin A\cos A$
Here, we get LHS=RHS
$\therefore \left( cosecA-\sin A \right)\left( \sec A-\cos A \right)=\dfrac{1}{\tan A+\cot A}$
Hence proved
$\left( \dfrac{1+{{\tan }^{2}}A}{1+{{\cot }^{2}}A} \right)={{\left( \dfrac{1-\tan A}{1-\cot A} \right)}^{2}}$
Ans: Given expression is $\dfrac{1+{{\tan }^{2}}A}{1+{{\cot }^{2}}A}={{\left( \dfrac{1-\tan A}{1-\cot A} \right)}^{2}}$.
Let us consider the LHS of the given expression, we get
$LHS=\dfrac{1+{{\tan }^{2}}A}{1+{{\cot }^{2}}A}$
By applying the identities ${{\sec }^{2}}A=1+{{\tan }^{2}}A$ and ${{\operatorname{cosec}}^{2}}A=1+{{\cot }^{2}}A$, we get
$\Rightarrow \dfrac{1+{{\tan }^{2}}A}{1+{{\cot }^{2}}A}=\dfrac{se{{c}^{2}}A}{{{\operatorname{cosec}}^{2}}A}$
We know that $cosec\theta =\dfrac{1}{\sin \theta }$ and $sec\theta =\dfrac{1}{\cos \theta }$, we get
$\Rightarrow \dfrac{1+{{\tan }^{2}}A}{1+{{\cot }^{2}}A}=\dfrac{\dfrac{1}{{{\cos }^{2}}A}}{\dfrac{1}{{{\sin }^{2}}A}}$
$\Rightarrow \dfrac{1+{{\tan }^{2}}A}{1+{{\cot }^{2}}A}=\dfrac{{{\sin }^{2}}A}{{{\cos }^{2}}A}$
$\Rightarrow \dfrac{1+{{\tan }^{2}}A}{1+{{\cot }^{2}}A}={{\tan }^{2}}A$
Now, consider the RHS of the given expression, we get
$RHS={{\left( \dfrac{1-\tan A}{1-\cot A} \right)}^{2}}$
Now, we know that $\cot \theta =\dfrac{1}{\tan \theta }$, we get
$\Rightarrow {{\left( \dfrac{1-\tan A}{1-\cot A} \right)}^{2}}={{\left( \dfrac{1-\tan A}{1-\dfrac{1}{\tan A}} \right)}^{2}}$
$\Rightarrow {{\left( \dfrac{1-\tan A}{1-\cot A} \right)}^{2}}={{\left( \dfrac{1-\tan A}{\dfrac{\tan A-1}{\tan A}} \right)}^{2}}$
$\Rightarrow {{\left( \dfrac{1-\tan A}{1-\cot A} \right)}^{2}}={{\left( -\tan A \right)}^{2}}$
$\Rightarrow {{\left( \dfrac{1-\tan A}{1-\cot A} \right)}^{2}}={{\tan }^{2}}A$
Here, we get LHS=RHS
$\therefore \dfrac{1+{{\tan }^{2}}A}{1+{{\cot }^{2}}A}={{\left( \dfrac{1-\tan A}{1-\cot A} \right)}^{2}}$
Hence proved
Conclusion
Exercise 8.3 Class 10 of Maths Chapter 8 - Introduction to Trigonometry, is crucial for a solid foundation in math that focuses on applying trigonometric ratios to solve various problems related to heights and distances. On average, you can expect about 1-2 questions from Ex 8.3 Class 10 in the exams.
Vedantu's NCERT solutions go beyond the basics to solidify your grasp of trigonometric ratios (sine, cosine, tangent, etc.). The solutions will equip you with techniques to simplify expressions involving trigonometric ratios using the identities.
Regular practice with NCERT solutions provided by platforms like Vedantu can enhance comprehension and problem-solving skills. Pay attention to the step-by-step solutions provided, grasp the underlying principles, and ensure clarity on the concepts before moving forward.
Class 10 Maths Chapter 8: Exercises Breakdown
Chapter 8 Introduction to Trigonometry All Exercises in PDF Format | |
11 Questions and Solutions | |
4 Questions and Solutions |
CBSE Class 10 Maths Chapter 8 Other Study Materials
S.No. | Important Links for Chapter 8 Introduction to Trigonometry |
1 | Class 10 Chapter 8: Introduction to Trigonometry Revision Notes |
2 | Class 10 Chapter 8: Introduction to Trigonometry Important Questions |
3 | |
4 | Class 10 Chapter 8: Introduction to Trigonometry NCERT Exemplar Solution |
Chapter-Specific NCERT Solutions for Class 10 Maths
Given below are the chapter-wise NCERT Solutions for Class 10 Maths. Go through these chapter-wise solutions to be thoroughly familiar with the concepts.
S.No. | NCERT Solutions Class 10 Chapter-wise Maths PDF |
1 | |
2 | |
3 | Chapter 3 - Pair Of Linear Equations In Two Variables Solutions |
4 | |
5 | |
6 | |
7 | |
8 | |
9 | |
10 | |
11 | |
12 | |
13 | |
14 |
Study Resources for Class 10 Maths
For complete preparation of Maths for CBSE Class 10 board exams, check out the following links for different study materials available at Vedantu.
FAQs on NCERT Solutions for Maths Chapter 8 Exercise 8.3 Class 10 - Introduction To Trigonometry
1. How Would you Define Trigonometric Identities?
If an equation is true for all values of the variables involved in the equation, it is called an identity equation. Trigonometric identities are equations that involve trigonometric ratios of an angle which is true for all values of the angle or angles involved in the equation.
2. In a Right Angle Triangle ABC Where Angle B is 90 Degrees, how will you Prove that for any of the Acute Angles, say θ in that Triangle: Sin2θ + Cos2θ = 1.
If B is 90 degrees then the side AC is the hypotenuse of the right-angle triangle. So as per Pythagoras theorem:
AC2 = AB2 + BC2
If we divide each term in the above equation by AC2 we get:
AC2/AC2 = AB2/AC2 + BC2/AC2
I.e (AC/AC)2 = (AB/AC)2 + (BC/AC)2
So, 1 = Cos2θ + Sin2θ, where θ is the angle opposite to side BC.
3. How many difficult illustrations are there in 10th Maths Exercise 8.4?
In Class 10 Maths Exercise 8.4, you will be able to analyse and solve Trigonometry questions. There are in total five questions with different sub-parts, which need to be solved by different equations of Trigonometry. Different identities that need to be used in this exercise are:
Tan2θ = -1 + Sec2 θ
Tan θ = Sinθ/Cosθ
Cotθ = 1/tanθ
Secθ = 1/Cosθ
Cosecθ = 1/Sinθ
Sin2 θ + Cos2 θ = 1
4. Which is the best ever example in Exercise 8.4 of 10th Maths?
The best example from Class 10 Maths Exercise 8.4 is the question to prove 10 different trigonometric identities. As it is important to remember all the trigonometric identities, you can solve this question to revise all the important basic identities that will be used to solve the questions. You can make use of the basic identities of trigonometry and algebra to solve and prove the given identities.
5. Why is the chapter on Trigonometry considered to be the most important chapter?
The chapter on Trigonometry is of utmost importance in Class 10 Maths. You will get a large number of questions from this chapter in your exam. This chapter carries high weightage. If prepared well, this chapter can help you score several marks in the exam. If you practice enough questions with a deep understanding of the concept, it will definitely be a game-changer for your grades in Class 10.
6. Why do students choose NCERT Maths Class 10 Chapter 8 Exercise 8.4 Solutions?
Trigonometry can be a bit tricky because you have to illustrate, apply identities, and find the solutions by solving them. If you get stuck somewhere, you need a guide to understand what needs to be done next. Hence, students must solve all the questions themselves. NCERT Maths Class 10 Chapter 8 Exercise 8.4 Solutions are prepared by the subject experts with high accuracy. You can rely on them for the best tricks to solve different questions. You can find these solutions free of cost on the Vedantu website (vedantu.com) and also on our Vedantu Mobile app.
7. Where can I find the downloadable solutions for NCERT Class 10 Maths Exercise 8.4?
To find the downloadable solutions for NCERT Class 10 Maths Exercise 8.4, follow these steps:
Click NCERT Maths Class 10 Chapter 8 Exercise 8.4 Solutions.
You will be redirected to Vedantu’s Solutions page for Class 10 Maths Exercise 8.4.
At the top of the page, you will find the link for PDF for Exercise 8.4 Solutions.
Click on the link, and you can easily download the solutions and keep them with yourself in offline mode to practice whenever you want.
8. What is Theorem 8.3 for Class 10 Maths Ch 8 Ex 8.3?
Theorem 8.3 states that a quadrilateral is a parallelogram if every pair of its opposite sides is equal.